14,059 research outputs found

    The effect of null-chains on the complexity of contact schemes

    Full text link

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Mean Field Approach for a Statistical Mechanical Model of Proteins

    Full text link
    We study the thermodynamical properties of a topology-based model proposed by Galzitskaya and Finkelstein for the description of protein folding. We devise and test three different mean-field approaches for the model, that simplify the treatment without spoiling the description. The validity of the model and its mean-field approximations is checked by applying them to the β\beta-hairpin fragment of the immunoglobulin-binding protein (GB1) and making a comparison with available experimental data and simulation results. Our results indicate that this model is a rather simple and reasonably good tool for interpreting folding experimental data, provided the parameters of the model are carefully chosen. The mean-field approaches substantially recover all the relevant exact results and represent reliable alternatives to the Monte Carlo simulations.Comment: RevTeX-4, 11 pages, 6 eps-figures, To Appear on J.Chem.Phy
    corecore