13,145 research outputs found

    Towards realistic artificial benchmark for community detection algorithms evaluation

    Full text link
    Assessing the partitioning performance of community detection algorithms is one of the most important issues in complex network analysis. Artificially generated networks are often used as benchmarks for this purpose. However, previous studies showed their level of realism have a significant effect on the algorithms performance. In this study, we adopt a thorough experimental approach to tackle this problem and investigate this effect. To assess the level of realism, we use consensual network topological properties. Based on the LFR method, the most realistic generative method to date, we propose two alternative random models to replace the Configuration Model originally used in this algorithm, in order to increase its realism. Experimental results show both modifications allow generating collections of community-structured artificial networks whose topological properties are closer to those encountered in real-world networks. Moreover, the results obtained with eleven popular community identification algorithms on these benchmarks show their performance decrease on more realistic networks

    Comparative Evaluation of Community Detection Algorithms: A Topological Approach

    Full text link
    Community detection is one of the most active fields in complex networks analysis, due to its potential value in practical applications. Many works inspired by different paradigms are devoted to the development of algorithmic solutions allowing to reveal the network structure in such cohesive subgroups. Comparative studies reported in the literature usually rely on a performance measure considering the community structure as a partition (Rand Index, Normalized Mutual information, etc.). However, this type of comparison neglects the topological properties of the communities. In this article, we present a comprehensive comparative study of a representative set of community detection methods, in which we adopt both types of evaluation. Community-oriented topological measures are used to qualify the communities and evaluate their deviation from the reference structure. In order to mimic real-world systems, we use artificially generated realistic networks. It turns out there is no equivalence between both approaches: a high performance does not necessarily correspond to correct topological properties, and vice-versa. They can therefore be considered as complementary, and we recommend applying both of them in order to perform a complete and accurate assessment

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application

    Centrality Measures for Networks with Community Structure

    Full text link
    Understanding the network structure, and finding out the influential nodes is a challenging issue in the large networks. Identifying the most influential nodes in the network can be useful in many applications like immunization of nodes in case of epidemic spreading, during intentional attacks on complex networks. A lot of research is done to devise centrality measures which could efficiently identify the most influential nodes in the network. There are two major approaches to the problem: On one hand, deterministic strategies that exploit knowledge about the overall network topology in order to find the influential nodes, while on the other end, random strategies are completely agnostic about the network structure. Centrality measures that can deal with a limited knowledge of the network structure are required. Indeed, in practice, information about the global structure of the overall network is rarely available or hard to acquire. Even if available, the structure of the network might be too large that it is too much computationally expensive to calculate global centrality measures. To that end, a centrality measure is proposed that requires information only at the community level to identify the influential nodes in the network. Indeed, most of the real-world networks exhibit a community structure that can be exploited efficiently to discover the influential nodes. We performed a comparative evaluation of prominent global deterministic strategies together with stochastic strategies with an available and the proposed deterministic community-based strategy. Effectiveness of the proposed method is evaluated by performing experiments on synthetic and real-world networks with community structure in the case of immunization of nodes for epidemic control.Comment: 30 pages, 4 figures. Accepted for publication in Physica A. arXiv admin note: text overlap with arXiv:1411.627

    {HyGen}: {G}enerating Random Graphs with Hyperbolic Communities

    No full text

    Qualitative Comparison of Community Detection Algorithms

    Full text link
    Community detection is a very active field in complex networks analysis, consisting in identifying groups of nodes more densely interconnected relatively to the rest of the network. The existing algorithms are usually tested and compared on real-world and artificial networks, their performance being assessed through some partition similarity measure. However, artificial networks realism can be questioned, and the appropriateness of those measures is not obvious. In this study, we take advantage of recent advances concerning the characterization of community structures to tackle these questions. We first generate networks thanks to the most realistic model available to date. Their analysis reveals they display only some of the properties observed in real-world community structures. We then apply five community detection algorithms on these networks and find out the performance assessed quantitatively does not necessarily agree with a qualitative analysis of the identified communities. It therefore seems both approaches should be applied to perform a relevant comparison of the algorithms.Comment: DICTAP 2011, The International Conference on Digital Information and Communication Technology and its Applications, Dijon : France (2011

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    False News On Social Media: A Data-Driven Survey

    Full text link
    In the past few years, the research community has dedicated growing interest to the issue of false news circulating on social networks. The widespread attention on detecting and characterizing false news has been motivated by considerable backlashes of this threat against the real world. As a matter of fact, social media platforms exhibit peculiar characteristics, with respect to traditional news outlets, which have been particularly favorable to the proliferation of deceptive information. They also present unique challenges for all kind of potential interventions on the subject. As this issue becomes of global concern, it is also gaining more attention in academia. The aim of this survey is to offer a comprehensive study on the recent advances in terms of detection, characterization and mitigation of false news that propagate on social media, as well as the challenges and the open questions that await future research on the field. We use a data-driven approach, focusing on a classification of the features that are used in each study to characterize false information and on the datasets used for instructing classification methods. At the end of the survey, we highlight emerging approaches that look most promising for addressing false news
    • …
    corecore