7,004 research outputs found

    What does it take to evolve behaviorally complex organisms?

    Get PDF
    What genotypic features explain the evolvability of organisms that have to accomplish many different tasks? The genotype of behaviorally complex organisms may be more likely to encode modular neural architectures because neural modules dedicated to distinct tasks avoid neural interference, i.e., the arrival of conflicting messages for changing the value of connection weights during learning. However, if the connection weights for the various modules are genetically inherited, this raises the problem of genetic linkage: favorable mutations may fall on one portion of the genotype encoding one neural module and unfavorable mutations on another portion encoding another module. We show that this can prevent the genotype from reaching an adaptive optimum. This effect is different from other linkage effects described in the literature and we argue that it represents a new class of genetic constraints. Using simulations we show that sexual reproduction can alleviate the problem of genetic linkage by recombining separate modules all of which incorporate either favorable or unfavorable mutations. We speculate that this effect may contribute to the taxonomic prevalence of sexual reproduction among higher organisms. In addition to sexual recombination, the problem of genetic linkage for behaviorally complex organisms may be mitigated by entrusting evolution with the task of finding appropriate modular architectures and learning with the task of finding the appropriate connection weights for these architectures

    Nonlinear deterministic equations in biological evolution

    Full text link
    We review models of biological evolution in which the population frequency changes deterministically with time. If the population is self-replicating, although the equations for simple prototypes can be linearised, nonlinear equations arise in many complex situations. For sexual populations, even in the simplest setting, the equations are necessarily nonlinear due to the mixing of the parental genetic material. The solutions of such nonlinear equations display interesting features such as multiple equilibria and phase transitions. We mainly discuss those models for which an analytical understanding of such nonlinear equations is available.Comment: Invited review for J. Nonlin. Math. Phy

    Finding a Mate With No Social Skills

    Full text link
    Sexual reproductive behavior has a necessary social coordination component as willing and capable partners must both be in the right place at the right time. While there are many known social behavioral adaptations to support solutions to this problem, we explore the possibility and likelihood of solutions that rely only on non-social mechanisms. We find three kinds of social organization that help solve this social coordination problem (herding, assortative mating, and natal philopatry) emerge in populations of simulated agents with no social mechanisms available to support these organizations. We conclude that the non-social origins of these social organizations around sexual reproduction may provide the environment for the development of social solutions to the same and different problems.Comment: 8 pages, 5 figures, GECCO'1

    The contribution of statistical physics to evolutionary biology

    Full text link
    Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. We discuss aspects of population genetics that have embraced methods from physics: amongst others, non-equilibrium statistical mechanics, travelling waves, and Monte-Carlo methods have been used to study polygenic evolution, rates of adaptation, and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics, for example, by following the distribution of paths taken by a population through time.Comment: 18 pages, 3 figures, glossary. Accepted in Trend in Ecology and Evolution (to appear in print in August 2011

    Complexity of evolutionary equilibria in static fitness landscapes

    Full text link
    A fitness landscape is a genetic space -- with two genotypes adjacent if they differ in a single locus -- and a fitness function. Evolutionary dynamics produce a flow on this landscape from lower fitness to higher; reaching equilibrium only if a local fitness peak is found. I use computational complexity to question the common assumption that evolution on static fitness landscapes can quickly reach a local fitness peak. I do this by showing that the popular NK model of rugged fitness landscapes is PLS-complete for K >= 2; the reduction from Weighted 2SAT is a bijection on adaptive walks, so there are NK fitness landscapes where every adaptive path from some vertices is of exponential length. Alternatively -- under the standard complexity theoretic assumption that there are problems in PLS not solvable in polynomial time -- this means that there are no evolutionary dynamics (known, or to be discovered, and not necessarily following adaptive paths) that can converge to a local fitness peak on all NK landscapes with K = 2. Applying results from the analysis of simplex algorithms, I show that there exist single-peaked landscapes with no reciprocal sign epistasis where the expected length of an adaptive path following strong selection weak mutation dynamics is eO(n1/3)e^{O(n^{1/3})} even though an adaptive path to the optimum of length less than n is available from every vertex. The technical results are written to be accessible to mathematical biologists without a computer science background, and the biological literature is summarized for the convenience of non-biologists with the aim to open a constructive dialogue between the two disciplines.Comment: 14 pages, 3 figure

    Exploiting the adaptation dynamics to predict the distribution of beneficial fitness effects

    Full text link
    Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depend on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remain nearly a constant for exponentially decaying distributions and increase when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.Comment: Communicated to PLOS ON
    corecore