194 research outputs found

    Adaptive Controllers for Assistive Robotic Devices

    Full text link
    Lower extremity assistive robotic devices, such as exoskeletons and prostheses, have the potential to improve mobility for millions of individuals, both healthy and disabled. These devices are designed to work in conjunction with the user to enhance or replace lost functionality of a limb. Given the large variability in walking dynamics from person to person, it is still an open research question of how to optimally control such devices to maximize their benefit for each individual user. In this context, it is becoming more and more evident that there exists no "one size fits all" solution, but that each device needs to be tuned on a subject-specific basis to best account for each user's unique gait characteristics. However, the controllers that run in the background of these devices to dictate when and what type of actuation to deliver often have up to a hundred different parameters that can be tuned on a subject-specific basis. To hand tune each parameter can be an extremely tedious and time consuming process. Additionally, current tuning practices often rely on subjective measures to inform the fitting process. To address the current obstacles associated with device control and tuning, I have developed novel tools that overcome some of these issues through the design of control architectures that autonomously adapt to the user based upon real-time physiological measures. This approach frames the tuning process of a device as a real-time optimization and allows for the device to co-adapt with the wearer during use. As an outcome of these approaches, I have been able to investigate what qualities of a device controller are beneficial to users through the analysis of whole body kinematics, dynamics, and energetics. The framework of my research has been broken down into four major projects. First, I investigated how current standards of processing and analyzing physiological measures could be improved upon. Specifically, I focused on how to analyze non-steady-state measures of metabolic work rate in real time and how the noise content of theses measures can inform confidence analyses. Second, I applied the techniques I developed for analyzing non-steady-state measures of metabolic work rate to conduct a real-time optimization of powered bilateral ankle exoskeletons. For this study I employed a gradient descent optimization to tune and optimize an actuation timing parameter of these simple exoskeletons on a subject-specific basis. Third, I investigated how users may use an adaptive controller where they had a more direct impact on the adaptation via their own muscle recruitment. In this study, I designed and tested an adaptive gain proportional myoelectric controller with healthy subjects walking in bilateral ankle exoskeletons. Through this work I showed that subjects adapted to using increased levels of total ankle power compared to unpowered walking in the devices. As a result, subjects decreased power at their hip and were able to achieve large decreases in their metabolic work rate compared to unpowered walking. Fourth, I compared how subjects may use a controller driven by neural signals differently than one driven by mechanically intrinsic signals. The results of this project suggest that control based on neural signals may be better suited for therapeutic rehabilitation than control based on mechanically intrinsic signals. Together, these four projects have drastically improved upon subject-specific control of assistive devices in both a research and clinical setting.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144029/1/jrkoller_1.pd

    Lower-limb amputees can reduce the energy cost of walking when assisted by an Active Pelvis Orthosis

    Get PDF
    Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations

    Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton

    Full text link
    Abstract Background Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user’s muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user’s myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. Methods We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user’s peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms-1. We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Results Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Conclusions Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow humans to adopt gait patterns different from their normal choices for locomotion. In our specific experiment, subjects increased ankle power and decreased hip power to walk with a reduction in metabolic cost. Future exoskeleton devices that rely on proportional myolectric control are likely to demonstrate improved performance by including an adaptive gain.http://deepblue.lib.umich.edu/bitstream/2027.42/115879/1/12984_2015_Article_86.pd

    Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control

    Full text link
    Abstract Background Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not. Methods The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user’s soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment. Results We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller. Conclusions We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects. Subjects were able to be less engaged on a muscle level when using a controller driven by mechanically intrinsic signals than when using a controller driven by neural signals, but this had no affect on their metabolic work rate. These results suggest that the type of controller (neural vs. mechanical) is likely to affect how individuals use robotic exoskeletons for therapeutic rehabilitation or human performance augmentation.https://deepblue.lib.umich.edu/bitstream/2027.42/143850/1/12984_2018_Article_379.pd

    A Review of Lower Limb Exoskeletons

    Get PDF
    In general, exoskeletons are defined as wearable robotic mechanisms for providing mobility. In the last six decades, many research work have been achieved to enhance the performance of exoskeletons thus developing them to nearly commercialized products. In this paper, a review is made for the lower limb exoskeleton concerning history, classification, selection and development, also a discussion for the most important aspects of comparison between different designs is presented. Further, some concluding remarks are withdrawn which could be useful for future work. Keywords: Exoskeletons, Lower extremity exoskeleton, Wearable robot

    Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power

    Get PDF
    Background Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Methods Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg−1). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Results Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg−1, leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. Conclusions These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits
    • …
    corecore