1,397 research outputs found

    Conformal electromagnetic wave propagation using primal mimetic finite elements

    Get PDF
    Elektromagnetische Wellenausbreitung bildet die physikalische Grundlage für unzählige Anwendungen in verschiedenen Bereichen der heutigen Welt. Um räumliche Szenarien zu modellieren, muss der kontinuierliche Raum in geeigneter Weise in ein Rechengebiet umgewandelt werden. Üblich diskretisierte Modelle – welche auf verschiedenen Größen beruhen – berücksichtigen die Beziehungen zwischen Feldvariablen mittels Relationen, welche durch partielle Differentialgleichungen repräsentiert werden. Um mathematische Beziehungen zwischen abhängigen Variablen in zweckdienlicher Art nachzubilden, schaffen hyperkomplexe Zahlensysteme ein passendes alternatives Rahmenwerk. Dieser Ansatz bezweckt das Einbinden bestimmter Systemeigenschaften und umfasst zusätzlich zur Modellierung von Feldproblemen, bei denen alle Variablen vorkommen, auch vereinfachte Modelle. Um eine wettbewerbsfähige Alternative zur üblichen numerischen Behandlung elektromagnetischer Felder in beobachtungsorientierter Weise darzubieten, wird das elektrische und magnetische Feld elektromagnetischer Wellenfelder als eine zusammengefasste Feldgröße, eingebettet im Funktionenraum, verstanden. Dieses Vorgehen ist intuitiv, da beide Felder in der Elektrodynamik gemeinsam auftreten und direkt messbar sind. Der Schwerpunkt dieser Arbeit ist in zwei Ziele untergliedert. Auf der einen Seite wird ein umformuliertes Maxwell-System in einer metrikfreien Umgebung mittels dem sogenannten „bikomplexen Ansatz“ umfassend untersucht. Auf der anderen Seite wird eine mögliche numerische Implementierung hinsichtlich der Finite-Elemente-Methode auf modernem Wege durch Nutzung der diskreten äußeren Analysis mit Fokus auf Genauigkeitsbelange bewertet. Hinsichtlich der numerischen Genauigkeitsbewertung wird demonstriert, dass der vorgelegte Ansatz grundsätzlich eine höhere Exaktheit zeigt, wenn man ihn mit Formulierungen vergleicht, welche auf der Helmholtz-Gleichung beruhen. Diese Dissertation trägt eine generalisierte hyperkomplexe alternative Darstellung von gewöhnlichen elektrodynamischen Ausdrucksweisen zum Themengebiet der Wellenausbreitung bei. Durch die Nutzung einer direkten Formulierung des elektrischen Feldes in Verbindung mit dem magnetischen Feld wird die Rechengenauigkeit von Randwertproblemen erhöht. Um diese Genauigkeitserhöhung zu erreichen, wird eine geeignete Erweiterung der de Rham-Kohomologie unterbreitet.Electromagnetic wave propagation provides the physical basis for countless applications in various subjects of today’s world. In order to model spatial scenarios, the continuous space must be converted to an appropriate computational domain. Ordinarily discretized models – which are based on distinct quantities – consider the connection between field variables by relations which are represented by partial differential equations. To reproduce mathematical relationships between dependent variables in a convenient manner, hypercomplex number systems build a suitable alternative framework. This approach aims to incorporate certain system properties and covers, in addition to the modeling of field problems where all variables are present, also simplified models. To provide a competitive alternative to the ordinary numerical handling of electromagnetic fields in an observation-based way, the electric and magnetic field of electromagnetic wave fields is understood as only one combined field variable embedded in the function space. This procedure is intuitive since both fields occur together in electrodynamics and are directly measureable. The focus of this thesis is twofold. On the one side, a reformulated Maxwell system is broadly investigated in a metric-free environment by the use of the so-called ”bicomplex approach”. On the other side, a possible numerical implementation concerning the Finite Element Method is evaluated in a modern way by the use of discrete exterior calculus with focus on accuracy matters. Regarding the numerical accuracy evaluation, it is demonstrated that the presented approach yields a higher exactness in general when comparing it to formulations which are based on the Helmholtz equation. This thesis contributes generalized hypercomplex alternative representations of ordinary electrodynamic expressions to the topic of wave propagation. By the use of a direct formulation of the electric field in conjunction with the magnetic field, the computational accuracy of boundary value problems is improved. In order to achieve this increase of accuracy, an appropriate enhancement of the de Rham cohomology is proposed

    Selected highlights from the study of mesons

    Full text link
    We provide a brief review of recent progress in the study of mesons using QCD's Dyson-Schwinger equations. Along the way we touch on aspects of confinement and dynamical chiral symmetry breaking but in the main focus upon: exact results for pseudoscalar mesons, including aspects of the eta-eta' problem; a realisation that the so-called vacuum condensates are actually an intrinsic, localised property of hadrons; an essentially nonperturbative procedure for constructing a symmetry-preserving Bethe-Salpeter kernel, which has enabled a demonstration that dressed-quarks possess momentum-dependent anomalous chromo- and electromagnetic moments that are large at infrared momenta, and resolution of a longstanding problem in understanding the mass-splitting between rho- and a1-mesons such that they are now readily seen to be parity partners in the meson spectrum; features of electromagnetic form factors connected with charged and neutral pions; and computation and explanation of valence-quark distribution functions in pseudoscalar mesons. We argue that in solving QCD, a constructive feedback between theory and extant and forthcoming experiments will enable constraints to be placed on the infrared behaviour of QCD's beta-function, the nonperturbative quantity at the core of hadron physics.Comment: 28 pages, 15 figures, 2 tables. Version to appear in the Chinese Journal of Physic

    Localized Manifold Harmonics for Spectral Shape Analysis

    Get PDF
    The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases

    Symmetry in Electromagnetism

    Get PDF
    Electromagnetism plays a crucial role in basic and applied physics research. The discovery of electromagnetism as the unifying theory for electricity and magnetism represents a cornerstone in modern physics. Symmetry was crucial to the concept of unification: electromagnetism was soon formulated as a gauge theory in which local phase symmetry explained its mathematical formulation. This early connection between symmetry and electromagnetism shows that a symmetry-based approach to many electromagnetic phenomena is recurrent, even today. Moreover, many recent technological advances are based on the control of electromagnetic radiation in nearly all its spectra and scales, the manipulation of matter–radiation interactions with unprecedented levels of sophistication, or new generations of electromagnetic materials. This is a fertile field for applications and for basic understanding in which symmetry, as in the past, bridges apparently unrelated phenomena―from condensed matter to high-energy physics. In this book, we present modern contributions in which symmetry proves its value as a key tool. From dual-symmetry electrodynamics to applications to sustainable smart buildings, or magnetocardiography, we can find a plentiful crop, full of exciting examples of modern approaches to electromagnetism. In all cases, symmetry sheds light on the theoretical and applied works presented in this book

    Visualization for the Physical Sciences

    Get PDF

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Numerical simulation of fracture pattern development and implications for fuid flow

    No full text
    Simulations are instrumental to understanding flow through discrete fracture geometric representations that capture the large-scale permeability structure of fractured porous media. The contribution of this thesis is threefold: an efficient finite-element finite-volume discretisation of the advection/diffusion flow equations, a geomechanical fracture propagation algorithm to create fractured rock analogues, and a study of the effect of growth on hydraulic conductivity. We describe an iterative geomechanics-based finite-element model to simulate quasi-static crack propagation in a linear elastic matrix from an initial set of random flaws. The cornerstones are a failure and propagation criterion as well as a geometric kernel for dynamic shape housekeeping and automatic remeshing. Two-dimensional patterns exhibit connectivity, spacing, and density distributions reproducing en echelon crack linkage, tip hooking, and polygonal shrinkage forms. Differential stresses at the boundaries yield fracture curving. A stress field study shows that curvature can be suppressed by layer interaction effects. Our method is appropriate to model layered media where interaction with neighbouring layers does not dominate deformation. Geomechanically generated fracture patterns are the input to single-phase flow simulations through fractures and matrix. Thus, results are applicable to fractured porous media in addition to crystalline rocks. Stress state and deformation history control emergent local fracture apertures. Results depend on the number of initial flaws, their initial random distribution, and the permeability of the matrix. Straightpath fracture pattern simplifications yield a lower effective permeability in comparison to their curved counterparts. Fixed apertures overestimate the conductivity of the rock by up to six orders of magnitude. Local sample percolation effects are representative of the entire model flow behaviour for geomechanical apertures. Effective permeability in fracture dataset subregions are higher than the overall conductivity of the system. The presented methodology captures emerging patterns due to evolving geometric and flow properties essential to the realistic simulation of subsurface processes
    corecore