2,428 research outputs found

    Parameterizing Path Partitions

    Full text link
    We study the algorithmic complexity of partitioning the vertex set of a given (di)graph into a small number of paths. The Path Partition problem (PP) has been studied extensively, as it includes Hamiltonian Path as a special case. The natural variants where the paths are required to be either \emph{induced} (Induced Path Partition, IPP) or \emph{shortest} (Shortest Path Partition, SPP), have received much less attention. Both problems are known to be NP-complete on undirected graphs; we strengthen this by showing that they remain so even on planar bipartite directed acyclic graphs (DAGs), and that SPP remains \NP-hard on undirected bipartite graphs. When parameterized by the natural parameter ``number of paths'', both SPP and IPP are shown to be W{1}-hard on DAGs. We also show that SPP is in \XP both for DAGs and undirected graphs for the same parameter, as well as for other special subclasses of directed graphs (IPP is known to be NP-hard on undirected graphs, even for two paths). On the positive side, we show that for undirected graphs, both problems are in FPT, parameterized by neighborhood diversity. We also give an explicit algorithm for the vertex cover parameterization of PP. When considering the dual parameterization (graph order minus number of paths), all three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs. We also lift the mentioned neighborhood diversity and dual parameterization results to directed graphs; here, we need to define a proper novel notion of directed neighborhood diversity. As we also show, most of our results also transfer to the case of covering by edge-disjoint paths, and purely covering.Comment: 27 pages, 8 figures. A short version appeared in the proceedings of the CIAC 2023 conferenc

    The VC-Dimension of Graphs with Respect to k-Connected Subgraphs

    Get PDF
    We study the VC-dimension of the set system on the vertex set of some graph which is induced by the family of its kk-connected subgraphs. In particular, we give tight upper and lower bounds for the VC-dimension. Moreover, we show that computing the VC-dimension is NP\mathsf{NP}-complete and that it remains NP\mathsf{NP}-complete for split graphs and for some subclasses of planar bipartite graphs in the cases k=1k = 1 and k=2k = 2. On the positive side, we observe it can be decided in linear time for graphs of bounded clique-width

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1−p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke
    • …
    corecore