147,827 research outputs found

    The covering radius problem for sets of perfect matchings

    Full text link
    Consider the family of all perfect matchings of the complete graph K2nK_{2n} with 2n2n vertices. Given any collection M\mathcal M of perfect matchings of size ss, there exists a maximum number f(n,x)f(n,x) such that if sf(n,x)s\leq f(n,x), then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. We use probabilistic arguments to give several lower bounds for f(n,x)f(n,x). We also apply the Lov\'asz local lemma to find a function g(n,x)g(n,x) such that if each edge appears at most g(n,x)g(n, x) times then there exists a perfect matching that agrees with each perfect matching in M\mathcal M in at most x1x-1 edges. This is an analogue of an extremal result vis-\'a-vis the covering radius of sets of permutations, which was studied by Cameron and Wanless (cf. \cite{cameron}), and Keevash and Ku (cf. \cite{ku}). We also conclude with a conjecture of a more general problem in hypergraph matchings.Comment: 10 page

    Non-homeomorphic topological rank and expansiveness

    Full text link
    Downarowicz and Maass (2008) have shown that every Cantor minimal homeomorphism with finite topological rank K>1K > 1 is expansive. Bezuglyi, Kwiatkowski and Medynets (2009) extended the result to non-minimal cases. On the other hand, Gambaudo and Martens (2006) had expressed all Cantor minimal continuou surjections as the inverse limit of graph coverings. In this paper, we define a topological rank for every Cantor minimal continuous surjection, and show that every Cantor minimal continuous surjection of finite topological rank has the natural extension that is expansive

    Properties of Bipolar Fuzzy Hypergraphs

    Full text link
    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of AA- tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs

    A Geometric Perspective on Sparse Filtrations

    Full text link
    We present a geometric perspective on sparse filtrations used in topological data analysis. This new perspective leads to much simpler proofs, while also being more general, applying equally to Rips filtrations and Cech filtrations for any convex metric. We also give an algorithm for finding the simplices in such a filtration and prove that the vertex removal can be implemented as a sequence of elementary edge collapses
    corecore