22 research outputs found

    Development of the ECOSAR P-Band Synthetic Aperture Radar

    Get PDF
    This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry

    Tri-Frequency Synthetic Aperture Radar for the Measurements of Snow Water Equivalent

    Get PDF
    A new airborne synthetic aperture radar (SAR) system was recently developed for the estimation of snow water equivalent (SWE). The radar is part of the SWESARR (Snow Water Equivalent Synthetic Aperture Radar and Radiometer) instrument, an active passive microwave system specifically designed for the accurate estimation of SWE. The dual polarization (VV, VH) radar operates at three frequency bands (9.65 GHz, 13.6 GHz, and 17.25 GHz), with bandwidths of up to 200 MHz. The radar flew its first flight campaign in November 2019, along with SWESARRs - already operational radiometer. The radar collected comprehensive data sets over various terrains that show a successful system performance. The inst slated to participate in future SnowEx campaigns

    Forest Structure Retrieval from Ecosar P-Band Single-Pass Interferometry

    Get PDF
    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques

    Radio Frequency Interference Detection and Mitigation Techniques Using Data from Ecosar 2014 Flight Campaign

    Get PDF
    Radio frequency interference (RFI) has strong influence on wide band airborne radar systems, especially operaingat L-band (1-2 GHz) or lower frequencies. EcoSAR is a P-band digital beamforming radar system, and RFI has tobe removed from raw echoes to obtain science quality data. In this paper we describe the current methodologyused to tackle RFI with EcoSAR, and provide an example on its performance. Finally, we discuss the advantagesand disadvantages of the method and mention potential improvements

    Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry

    Get PDF
    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques

    The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Get PDF
    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP)

    Spaceborne P-Band MIMO SAR for Planetary Applications

    Get PDF
    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near-subsurface measurements applicable to multiple Decadal Survey Science Goals

    Beamforming P-Band Synthetic Aperture Radar for Planetary Applications

    Get PDF
    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet multiple Decadal Survey science goals for planetary exploration. The radar is capable of providing unprecedented surface and near subsurface measurements at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radars highly flexible modular architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements, all while minimizing cost and development time

    Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    Get PDF
    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber

    Design and Optimization of Broadband Matching Networks for Widely Steerable Phased Array Radar Systems

    Get PDF
    The use of phased arrays have become prevalent in radar systems for military and weather applications due to their planar configuration and ability of electronic steering. However, mutual coupling between surrounding antenna elements causes degradation in performance at wide scan angles and broad bandwidth. This mutual coupling creates impedance mismatches at the element-level. A matching network can be used to correct this, but broadband matching networks that consider scan angle have not been explored. This work introduces a novel optimization method for designing matching networks. This method seeks to improve performance for wide-scanning broadband phased arrays, especially NASA鈥檚 Ecological Synthetic Aperture Radar (EcoSAR). The fabricated static matching network achieves a 78% reduction in the optimizer objective function and provides a 10 dB match for the majority of the scanning range of -40掳 to 40掳 at a fractional bandwidth of 28.7%. This method is also used to design a tunable matching network that achieves a measured 99.95% reduction in the optimizer objective function and provides a 15 dB match across frequency and scanning range for the EcoSAR array using frequency bins. This novel design method shows great promise for improving performance for future wide-scanning broadband phased array systems
    corecore