4,334 research outputs found

    Synergistic Effects of Different Levels of Genomic Data for the Staging of Lung Adenocarcinoma: An Illustrative Study

    Get PDF
    Lung adenocarcinoma (LUAD) is a common and very lethal cancer. Accurate staging is a prerequisite for its effective diagnosis and treatment. Therefore, improving the accuracy of the stage prediction of LUAD patients is of great clinical relevance. Previous works have mainly focused on single genomic data information or a small number of different omics data types concurrently for generating predictive models. A few of them have considered multi-omics data from genome to proteome. We used a publicly available dataset to illustrate the potential of multi-omics data for stage prediction in LUAD. In particular, we investigated the roles of the specific omics data types in the prediction process. We used a self-developed method, Omics-MKL, for stage prediction that combines an existing feature ranking technique Minimum Redundancy and Maximum Relevance (mRMR), which avoids redundancy among the selected features, and multiple kernel learning (MKL), applying different kernels for different omics data types. Each of the considered omics data types individually provided useful prediction results. Moreover, using multi-omics data delivered notably better results than using single-omics data. Gene expression and methylation information seem to play vital roles in the staging of LUAD. The Omics-MKL method retained 70 features after the selection process. Of these, 21 (30%) were methylation features and 34 (48.57%) were gene expression features. Moreover, 18 (25.71%) of the selected features are known to be related to LUAD, and 29 (41.43%) to lung cancer in general. Using multi-omics data from genome to proteome for predicting the stage of LUAD seems promising because each omics data type may improve the accuracy of the predictions. Here, methylation and gene expression data may play particularly important roles

    Early Detection and Prevention of Lungs Cancer using Artificial Neural Network

    Get PDF
    Out of the dangerous diseases, cancer being one of the cause of death and it can be avoided if correctly detected in the early stage. The possibilities of survival will be increased if predicted and cured at early stage. To predict accurately and to provide best diagnosis, many mechanisms are developed in the field of Artificial Intelligence and machine learning. This paper provides a systematic review of different machine learning algorithms like Artificial Neural Network (ANN), Decision Trees (DT), Support Vector Machine (SVM), Random Forest (RF), Voting Classifier and Bayesian Network (BN). Survey also shows that ANN and SVM are preferred by researchers to develop the predictive models

    Prediction of lung tumor types based on protein attributes by machine learning algorithms

    Full text link

    Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer

    Full text link
    Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7 figures, 8 table
    • …
    corecore