27,023 research outputs found

    The Early Restart Algorithm

    Get PDF
    Consider an algorithm whose time to convergence is unknown (because of some random element in the algorithm, such as a random initial weight choice for neural network training). Consider the following strategy. Run the algorithm for a specific time T. If it has not converged by time T, cut the run short and rerun it from the start (repeat the same strategy for every run). This so-called restart mechanism has been proposed by Fahlman (1988) in the context of backpropagation training. It is advantageous in problems that are prone to local minima or when there is a large variability in convergence time from run to run, and may lead to a speed-up in such cases. In this article, we analyze theoretically the restart mechanism, and obtain conditions on the probability density of the convergence time for which restart will improve the expected convergence time. We also derive the optimal restart time. We apply the derived formulas to several cases, including steepest-descent algorithms

    Variable Annealing Length and Parallelism in Simulated Annealing

    Full text link
    In this paper, we propose: (a) a restart schedule for an adaptive simulated annealer, and (b) parallel simulated annealing, with an adaptive and parameter-free annealing schedule. The foundation of our approach is the Modified Lam annealing schedule, which adaptively controls the temperature parameter to track a theoretically ideal rate of acceptance of neighboring states. A sequential implementation of Modified Lam simulated annealing is almost parameter-free. However, it requires prior knowledge of the annealing length. We eliminate this parameter using restarts, with an exponentially increasing schedule of annealing lengths. We then extend this restart schedule to parallel implementation, executing several Modified Lam simulated annealers in parallel, with varying initial annealing lengths, and our proposed parallel annealing length schedule. To validate our approach, we conduct experiments on an NP-Hard scheduling problem with sequence-dependent setup constraints. We compare our approach to fixed length restarts, both sequentially and in parallel. Our results show that our approach can achieve substantial performance gains, throughout the course of the run, demonstrating our approach to be an effective anytime algorithm.Comment: Tenth International Symposium on Combinatorial Search, pages 2-10. June 201

    Speculative Concurrency Control for Real-Time Databases

    Full text link
    In this paper, we propose a new class of Concurrency Control Algorithms that is especially suited for real-time database applications. Our approach relies on the use of (potentially) redundant computations to ensure that serializable schedules are found and executed as early as possible, thus, increasing the chances of a timely commitment of transactions with strict timing constraints. Due to its nature, we term our concurrency control algorithms Speculative. The aforementioned description encompasses many algorithms that we call collectively Speculative Concurrency Control (SCC) algorithms. SCC algorithms combine the advantages of both Pessimistic and Optimistic Concurrency Control (PCC and OCC) algorithms, while avoiding their disadvantages. On the one hand, SCC resembles PCC in that conflicts are detected as early as possible, thus making alternative schedules available in a timely fashion in case they are needed. On the other hand, SCC resembles OCC in that it allows conflicting transactions to proceed concurrently, thus avoiding unnecessary delays that may jeopardize their timely commitment

    TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs

    Full text link
    Given a large graph, how can we determine similarity between nodes in a fast and accurate way? Random walk with restart (RWR) is a popular measure for this purpose and has been exploited in numerous data mining applications including ranking, anomaly detection, link prediction, and community detection. However, previous methods for computing exact RWR require prohibitive storage sizes and computational costs, and alternative methods which avoid such costs by computing approximate RWR have limited accuracy. In this paper, we propose TPA, a fast, scalable, and highly accurate method for computing approximate RWR on large graphs. TPA exploits two important properties in RWR: 1) nodes close to a seed node are likely to be revisited in following steps due to block-wise structure of many real-world graphs, and 2) RWR scores of nodes which reside far from the seed node are proportional to their PageRank scores. Based on these two properties, TPA divides approximate RWR problem into two subproblems called neighbor approximation and stranger approximation. In the neighbor approximation, TPA estimates RWR scores of nodes close to the seed based on scores of few early steps from the seed. In the stranger approximation, TPA estimates RWR scores for nodes far from the seed using their PageRank. The stranger and neighbor approximations are conducted in the preprocessing phase and the online phase, respectively. Through extensive experiments, we show that TPA requires up to 3.5x less time with up to 40x less memory space than other state-of-the-art methods for the preprocessing phase. In the online phase, TPA computes approximate RWR up to 30x faster than existing methods while maintaining high accuracy.Comment: 12pages, 10 figure

    Squeaky Wheel Optimization

    Full text link
    We describe a general approach to optimization which we term `Squeaky Wheel' Optimization (SWO). In SWO, a greedy algorithm is used to construct a solution which is then analyzed to find the trouble spots, i.e., those elements, that, if improved, are likely to improve the objective function score. The results of the analysis are used to generate new priorities that determine the order in which the greedy algorithm constructs the next solution. This Construct/Analyze/Prioritize cycle continues until some limit is reached, or an acceptable solution is found. SWO can be viewed as operating on two search spaces: solutions and prioritizations. Successive solutions are only indirectly related, via the re-prioritization that results from analyzing the prior solution. Similarly, successive prioritizations are generated by constructing and analyzing solutions. This `coupled search' has some interesting properties, which we discuss. We report encouraging experimental results on two domains, scheduling problems that arise in fiber-optic cable manufacturing, and graph coloring problems. The fact that these domains are very different supports our claim that SWO is a general technique for optimization
    • …
    corecore