74 research outputs found

    Dynamics Analysis and Biomass Productivity Optimisation of a Microbial Cultivation Process through Substrate Regulation

    Get PDF
    A microbial cultivation process model with variable biomass yield, control of substrate concentration, and biomass recycle is formulated, where the biochemical kinetics follows an extension of the Monod and Contois models. Control of substrate concentration allows for indirect monitoring of biomass and dissolved oxygen concentrations and consequently obtaining high yield and productivity of biomass. Dynamics analysis of the proposed model is carried out and the existence of order-1 periodic solution is deduced with a formulation of the period, which provides a theoretical possibility to convert the state-dependent control to a periodic one while keeping the dynamics unchanged. Moreover, the stability of the order-1 periodic solution is verified by a geometric method. The stability ensures a certain robustness of the adopted control; that is, even with an inaccurately detected substrate concentration or a deviation, the system will be always stable at the order-1 periodic solution under the control. The simulations are carried out to complement the theoretical results and optimisation of the biomass productivity is presented

    Dynamics of a Stochastic Functional System for Wastewater Treatment

    Get PDF
    The dynamics of a delayed stochastic model simulating wastewater treatment process are studied. We assume that there are stochastic fluctuations in the concentrations of the nutrient and microbes around a steady state, and introduce two distributed delays to the model describing, respectively, the times involved in nutrient recycling and the bacterial reproduction response to nutrient uptake. By constructing Lyapunov functionals, sufficient conditions for the stochastic stability of its positive equilibrium are obtained. The combined effects of the stochastic fluctuations and delays are displayed

    Periodic Oscillations in a Chemostat Model with Two Discrete Delays

    Get PDF
    Periodic oscillations of solutions of a chemostat-type model in which a species feeds on a limiting nutrient are considered. The model incorporates two discrete delays representing the lag in nutrient recycling and nutrient conversion. Through the study of characteristic equation associated with the linearized system, a unique positive equilibrium is found and proved to be locally asymptotically stable under some conditions. Meanwhile, a Hopf bifurcation causing periodic solutions is also obtained. Numerical simulations illustrate the theoretical results

    Bounded random fluctuations on the input flow in chemostat models with wall growth and non-monotonic kinetics

    Get PDF
    Dedicated to the memory of María José Garrido Atienza.This paper investigates a chemostat model with wall growth and Haldane consumption kinetics. In addition, bounded random fluctuations on the input flow, which are modeled by means of the well-known Ornstein-Uhlenbeck process, are considered to obtain a much more realistic model fitting in a better way the phenomena observed by practitioners in real devices. Once the existence and uniqueness of global positive solution has been proved, as well as the existence of deterministic absorbing and attracting sets, the random dynamics inside the attracting set is studied in detail to provide conditions under which persistence of species is ensured, the main goal pursued from the practical point of view. Finally, we support the theoretical results with several numerical simulations.Junta de Andalucía P12-FQM-1492Ministerio de Ciencia, Innovación y Universidades (MCIU). España PGC2018-096540-B-I00Junta de Andalucía (Consejería de Economía y Conocimiento) FEDER US-1254251Junta de Andalucía (Consejería de Economía y Conocimiento) P18-FR-450

    Threshold Dynamics of a Stochastic Chemostat Model with Two Nutrients and One Microorganism

    Get PDF
    A new stochastic chemostat model with two substitutable nutrients and one microorganism is proposed and investigated. Firstly, for the corresponding deterministic model, the threshold for extinction and permanence of the microorganism is obtained by analyzing the stability of the equilibria. Then, for the stochastic model, the threshold of the stochastic chemostat for extinction and permanence of the microorganism is explored. Difference of the threshold of the deterministic model and the stochastic model shows that a large stochastic disturbance can affect the persistence of the microorganism and is harmful to the cultivation of the microorganism. To illustrate this phenomenon, we give some computer simulations with different intensity of stochastic noise disturbance

    Awakened oscillations in coupled consumer-resource pairs

    Get PDF
    The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as fast-scale and slow-scale variables respectively and subsequently considering developments in phase planes of these variables, fast and slow, as if they are independent. When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained oscillatory behavior (although damped oscillations about the equilibrium are admitted). When the consumer-resource pairs are weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific interference competition and lasers coupled via their cavity losses.Comment: 31 pages, 8 figures 2 tables, 48 reference
    • …
    corecore