3,820 research outputs found

    Knowledge-based vision for space station object motion detection, recognition, and tracking

    Get PDF
    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed

    On the Hardware/Software Design and Implementation of a High Definition Multiview Video Surveillance System

    Get PDF
    published_or_final_versio

    Speeding up Adaboost object detection with motion segmentation and Haar feature acceleration

    Get PDF
    A key challenge in a surveillance system is the object detection task. Object detection in general is a non-trivial problem. A sub-problem within the broader context of object detection which many researchers focus on is face detection. Numerous techniques have been proposed for face detection. One of the better performing algorithms is proposed by Viola et. al. This algorithm is based on Adaboost and uses Haar features to detect objects. The main reason for its popularity is very low false positive rates and the fact that the classifier network can be trained for any detection task. The use of Haar basis functions to represent key object features is the key to its success. The basis functions are organized as a network to form a strong classifier. To detect objects, this technique divides each input image into non-overlapping sub-windows and the strong classifier is applied to each sub-window to detect the presence of an object. The process is repeated at multiple scales of the input image to detect objects of various sizes. In this thesis we propose an object detection system that uses object segmentation as a preprocessing step. We use Mixture of Gaussians (MoG) proposed by Staffer et. al. for object segmentation. One key advantage with using segmentation to extract image regions of interest is that it reduces the number of search windows sent to detection task, thereby reducing the computational complexity and the execution time. Moreover, owing to the computational complexity of both the segmentation and detection algorithms we used in the system, we propose hardware architectures for accelerating key computationally intensive blocks. In this thesis we propose hardware architecture for MoG and also for a key compute intensive block within the adaboost algorithm corresponding to the Haar feature computation

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore