63 research outputs found

    Graph-theoretic concepts in computer science

    Get PDF

    Planare Graphen und ihre Dualgraphen auf Zylinderoberflächen

    Get PDF
    In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.Die Arbeit beschäftigt sich mit planaren Zeichnungen ungerichteter und gerichteter Graphen auf Zylinderoberflächen. Im ungerichteten Fall werden Zeichnungen betrachtet, bei denen die Knoten auf einer Linie parallel zur Zylinderachse positioniert werden und die Kanten diese Linie nicht schneiden dürfen. Es kann gezeigt werden, dass eine planare Zeichnung genau dann möglich ist, wenn die Kanten des Graphen in einer double-ended queue (Deque) verarbeitet werden können. Ebenso lassen sich dadurch Queue, Stack und Doppelstack charakterisieren. Eine überraschende Konsequenz aus diesen Erkenntnissen ist, dass die Deque genau die planaren Graphen mit Hamiltonpfad charakterisiert. Dies erweitert die bereits bekannte Charakterisierung planarer Graphen mit Hamiltonkreis durch den Doppelstack. Im gerichteten Fall müssen die Kantenkurven entweder in Richtung der Zylinderachse verlaufen (SUP-Graphen) oder sich um die Achse herumbewegen (RUP-Graphen). Die Arbeit charakterisiert RUP-Graphen und zeigt, dass RUP und SUP ihre Rollen tauschen, wenn man Graph und Dualgraph betrachtet. Der SUP-Graph verhält sich dabei zum RUP-Graphen wie elektrischer Strom durch einen Leiter zum induzierten Magnetfeld. Ausgehend von dieser Charakterisierung ist es möglich einen Linearzeit-Algorithmus zu entwickeln, der entscheidet ob ein gerichteter Graph ohne Quellen und Senken ein RUP-Graph ist, während der allgemeine Fall NP-hart ist [Bra14]

    Generalized Lattice Gauge Theory, Spin Foams and State Sum Invariants

    Get PDF
    We construct a generalization of pure lattice gauge theory (LGT) where the role of the gauge group is played by a tensor category. The type of tensor category admissible (spherical, ribbon, symmetric) depends on the dimension of the underlying manifold (<=3, <=4, any). Ordinary LGT is recovered if the category is the (symmetric) category of representations of a compact Lie group. In the weak coupling limit we recover discretized BF-theory in terms of a coordinate free version of the spin foam formulation. We work on general cellular decompositions of the underlying manifold. In particular, we are able to formulate LGT as well as spin foam models of BF-type with quantum gauge group (in dimension <=4) and with supersymmetric gauge group (in any dimension). Technically, we express the partition function as a sum over diagrams denoting morphisms in the underlying category. On the LGT side this enables us to introduce a generalized notion of gauge fixing corresponding to a topological move between cellular decompositions of the underlying manifold. On the BF-theory side this allows a rather geometric understanding of the state sum invariants of Turaev/Viro, Barrett/Westbury and Crane/Yetter which we recover. The construction is extended to include Wilson loop and spin network type observables as well as manifolds with boundaries. In the topological (weak coupling) case this leads to TQFTs with or without embedded spin networks.Comment: 58 pages, LaTeX with AMS and XY-Pic macros; typos corrected and references update

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions

    Full text link
    A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in Rd\R^d. Tightness of the distribution, as δ0\delta \to 0, is established for the following two-dimensional examples: the uniformly random spanning tree on δZ2\delta \Z^2, the minimal spanning tree on δZ2\delta \Z^2 (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in R2\R^2 with density δ2\delta^{-2}. In each case, sample trees are proven to have the following properties, with probability one with respect to any of the limiting measures: i) there is a single route to infinity (as was known for δ>0\delta > 0), ii) the tree branches are given by curves which are regular in the sense of H\"older continuity, iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds one, iv) there is a random dense subset of R2\R^2, of dimension strictly between one and two, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints, v) branching occurs at countably many points in R2\R^2, and vi) the branching numbers are uniformly bounded. The results include tightness for the loop erased random walk (LERW) in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.Comment: Revised; 54 pages, 6 figures (LaTex

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version
    corecore