34,392 research outputs found

    Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb

    Get PDF
    We report the experimental realization and characterization of one 60-mode copy, and of two 30-mode copies, of a dual-rail quantum-wire cluster state in the quantum optical frequency comb of a bimodally pumped optical parametric oscillator. This is the largest entangled system ever created whose subsystems are all available simultaneously. The entanglement proceeds from the coherent concatenation of a multitude of EPR pairs by a single beam splitter, a procedure which is also a building block for the realization of hypercubic-lattice cluster states for universal quantum computing.Comment: Accepted by PRL. 5 pages, 5 figures + 14 pages, 9 figures of supplemental material. Ver3: better experimental dat

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Metrical properties of the set of bent functions in view of duality

    Get PDF
    In the paper, we give a review of metrical properties of the entire set of bent functions and its significant subclasses of self-dual and anti-self-dual bent functions. We present results for iterative construction of bent functions in n + 2 variables based on the concatenation of four bent functions and consider related open problem proposed by one of the authors. Criterion of self-duality of such functions is discussed. It is explored that the pair of sets of bent functions and affine functions as well as a pair of sets of self-dual and anti-self-dual bent functions in n > 4 variables is a pair of mutually maximally distant sets that implies metrical duality. Groups of automorphisms of the sets of bent functions and (anti-)self-dual bent functions are discussed. The solution to the problem of preserving bentness and the Hamming distance between bent function and its dual within automorphisms of the set of all Boolean functions in n variables is considered

    Magic State Distillation with Low Space Overhead and Optimal Asymptotic Input Count

    Full text link
    We present an infinite family of protocols to distill magic states for TT-gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the TT-gate depth of the circuit scale linearly in the logarithm of the target error δ\delta (up to loglog1/δ\log \log 1/\delta). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the "inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the "outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.Comment: 39 pages, (v2) renamed "odd" and "even" weakly self-dual CSS codes of (v1) to "normal" and "hyperbolic" codes, respectively. (v3) published in Quantu

    Uniqueness and Homogeneity of Ordered Relational Structures

    Get PDF
    There are four major results in the paper. (1) In a general ordered relational structure that is order dense, Dedekind complete, and whose dilations (automorphisms with fixed points) are Archimedean, various consequences of finite uniqueness are developed (Theorem 2.6). (2) Replacing the Archimedean assumption by the assumption that there is a homogeneous subgroup of automorphisms that is Archimedean ordered is sufficient to show that the structure can be represented numberically as a generalized unit structure in the sense that the defining real relations satisfy the usual numerical property of homogeneity (Theorem 3.4). The last two results pertain just to idempotent concatenation structures. (3) In a closed, idempotent, solvable, and Dedekind complete concatenation structure, homogeneity is equivalent to the structure satisfying an inductive property analogous to the condition for homogeneity in a positive concatenation structure (Theorem 4.3). Finally, (4) an axiomatization is given for an idempotent structure to be of scale type (2, 2), which has previously been shown to be equivalent to a dual bilinear representation. Basically two operations are defined in terms of the given one, and the conditions are that each must be right autodistributive and together they satisfy a generalized bisymmetry property. The paper ends listing several unsolved problems.Psycholog

    Recent progress in random metric theory and its applications to conditional risk measures

    Full text link
    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally L0L^{0}-convex topology and in particular a characterization for a locally L0L^{0}-convex module to be L0L^{0}-pre-barreled. Section 7 gives some basic results on L0L^{0}-convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable LL^{\infty}-type of conditional convex risk measure and every continuous LpL^{p}-type of convex conditional risk measure (1p<+1\leq p<+\infty) can be extended to an LF(E)L^{\infty}_{\cal F}({\cal E})-type of σϵ,λ(LF(E),LF1(E))\sigma_{\epsilon,\lambda}(L^{\infty}_{\cal F}({\cal E}), L^{1}_{\cal F}({\cal E}))-lower semicontinuous conditional convex risk measure and an LFp(E)L^{p}_{\cal F}({\cal E})-type of Tϵ,λ{\cal T}_{\epsilon,\lambda}-continuous conditional convex risk measure (1p<+1\leq p<+\infty), respectively.Comment: 37 page
    corecore