204 research outputs found

    Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

    Get PDF
    A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009

    Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

    Get PDF
    A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009

    Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    Get PDF
    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone

    Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Get PDF
    We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR). The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF). <br><br> We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers

    Field demonstration of simultaneous wind and temperaturemeasurements from 5to50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar

    Get PDF
    We report the first (to our knowledge) field demonstration of simultaneous wind and temperature measurements with a Na double-edge magneto-optic filter implemented in the receiver of a three-frequency Na Doppler lidar. Reliable winds and temperatures were obtained in the altitude range of 10-45 km with 1 km resolution and 60 min integration under the conditions of 0.4 W lidar power and 75 cm telescope aperture. This edge filter with a multi-frequency lidar concept can be applied to other direct-detection Doppler lidars for profiling both wind and temperature simultaneously from the lower to the upper atmosphere

    LALINET: The First Latin American–Born Regional Atmospheric Observational Network

    Get PDF
    Sustained and coordinated efforts of lidar teams in Latin America at the beginning of the 21st century have built LALINET (Latin American Lidar NETwork), the only observational network in Latin America created by the agreement and commitment of Latin American scientists. They worked with limited funding but an abundance of enthusiasm and commitment toward their joint goal. Before LALINET, there were a few pioneering lidar stations operating in Latin America, described briefly here. Bi-annual Latin American Lidar Workshops, held from 2001 to the present, supported both the development of the regional lidar community and LALINET. At those meetings, lidar researchers from Latin America meet to conduct regular scientific and technical exchanges among themselves and with experts from the rest of the world. Regional and international scientific cooperation has played an important role for the development of both the individual teams and the network. The current LALINET status and activities are described, emphasizing the processes of standardization of the measurements, methodologies, calibration protocols, and retrieval algorithms. Failures and successes achieved in the buildup of LALINET are presented. In addition, the first LALINET joint measurement campaign and a set of aerosol extinction profile measurements obtained from the aerosol plume produced by the Calbuco volcano eruption on April 22, 2015, are described and discussed.Fil: Antuña Marrero, Juan Carlos. Centro Meteorológico de Camagüey; CubaFil: Landulfo, Eduardo. Instituto de Pesquisas Energéticas e Nucleares; BrasilFil: Estevan, René. Centro Meteorológico de Camagüey; CubaFil: Barja, Boris. Centro Meteorológico de Camagüey; Cuba. Universidade de Sao Paulo; BrasilFil: Robock, Alan. State University of New Jersey; Estados UnidosFil: Wolfram, Elian Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Ristori, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Clemesha, Barclay. Upper Atmosphere Research Group; BrasilFil: Zaratti, Francesco. Universidad Mayor de San Andrés; BoliviaFil: Forno, Ricardo. Universidad Mayor de San Andrés; BoliviaFil: Armandillo, Errico. ESTEC; Países BajosFil: Bastidas, Álvaro E.. Universidad Nacional de Colombia. Sede Medellin; ColombiaFil: de Frutos Baraja, Ángel Máximo. Universidad de Valladolid; EspañaFil: Whiteman, David N.. National Aeronautics and Space Administration; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; ArgentinaFil: Barbosa, Henrique M. J.. Universidade de Sao Paulo; BrasilFil: Lopes, Fabio. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; BrasilFil: Montilla-Rosero, Elena. Universidad de Concepción; Chile. Universidad Escuela de Administración, Finanzas e Instituto Tecnológico; ColombiaFil: Guerrero Rascado, Juan L.. Comissao Nacional de Energia Nuclear. Centro de Lasers e Aplicacoes. Instituto de Pesquisas Energeticas e Nucleares.; Brasil. Universidad de Granada; Españ

    Statistical Spectral Characteristics of Three-Dimensional Winds in the Mesopause Region Revealed by the Andes Lidar

    Get PDF
    By analyzing data recorded at the Andes Lidar Observatory in Cerro Pachon, Chile (30.3°S, 70.7°W) from May 2014 to July 2019, we investigated the fundamental features of three-dimensional wind and temperature spectra. The vertical wavenumber spectral amplitudes of horizontal winds show obvious seasonal variations that are closely related to the seasonal variations in the source and background winds. The wavenumber spectral slopes of the horizontal winds are systematically less negative than −3, with mean values of −1.96 and −2.18 for zonal and meridional winds, respectively. The zonal and meridional wind frequency spectra have mean slopes of −1.37 and −1.56, respectively; these values are slightly less negative than −5/3. Moreover, the frequency spectral amplitudes show different seasonal variations from those of the wavenumber spectra, possibly because they correspond to different GW spectral components. The vertical wind has obviously different spectral features than the horizontal winds. The vertical wind spectra are notably shallower than the horizontal wind spectra, with mean slopes of −0.82 and −0.91 for the wavenumber and frequency spectra, respectively, departing evidently from those expected under linear instability theory (LIT). Although the vertical wind spectrum is almost always separable, the horizontal wind spectra are separable only at high frequencies. As the frequency increased, the horizontal wind wavenumber spectra become shallower and depart from the spectral slope expected under LIT, likely because high-frequency GWs are not completely saturated. In general, our results do not support LIT

    Numerical Simulations of Gravity Waves Imaged Over Arecibo During the 10-Day January 1993 Campaign

    Get PDF
    Recently, measurements were made of mesospheric gravity waves in the OI (5577 Å) nightglow observed from Arecibo, Puerto Rico, during January 1993 as part of a special 10-day campaign. Clear, monochromatic gravity waves were observed on several nights. By using a full-wave model that realistically includes the major physical processes in this region, we have simulated the propagation of two waves through the mesopause region and calculated the O(1 S) nightglow response to the waves. Mean winds derived from both UARS wind imaging interferometer (WINDII) and Arecibo incoherent scatter radar observations were employed in the computations as were the climatological zonal winds defined by COSPAR International Reference Atmosphere 1990 (CIRA). For both sets of measured winds the observed waves encounter critical levels within the O(1 S) emission layer, and wave amplitudes, derived from the requirement that the simulated and observed amplitudes of the O(1 S) fluctuations be equal, are too large for the waves to be gravitationally stable below the emission layer. Some of the model coefficients were adjusted in order to improve the agreement with the measurements, including the eddy diffusion coefficients and the height of the atomic oxygen layer. The effect of changing the chemical kinetic parameters was investigated but was found to be unimportant. Eddy diffusion coefficients that are 10 to 100 times larger than presently accepted values are required to explain most of the observations in the cases that include the measured background winds, whereas the observations can be modeled using the nominal eddy diffusion coefficients and the CIRA climatological winds. Lowering the height of the atomic oxygen layer improved the simulations slightly for one of the simulated waves but caused a less favorable simulation for the other wave. For one of the waves propagating through the WINDII winds the simulated amplitude was too large below 82 km for the wave to be gravitationally stable, in spite of the adjustments made to the model parameters. This study demonstrates that an accurate description of the mean winds is an essential requirement for a complete interpretation of observed wave-driven airglow fluctuations
    corecore