92 research outputs found

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)āˆ©Dā‰ N(v)āˆ©DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    Improved upper bounds on the domination number of graphs with minimum degree at least five

    Full text link
    An algorithmic upper bound on the domination number Ī³\gamma of graphs in terms of the order nn and the minimum degree Ī“\delta is proved. It is demonstrated that the bound improves best previous bounds for any 5ā‰¤Ī“ā‰¤505\le \delta \le 50. In particular, for Ī“=5\delta=5, Xing et al.\ proved in 2006 that Ī³ā‰¤5n/14<0.3572n\gamma \le 5n/14 < 0.3572 n. This bound is improved to 0.3440n0.3440 n. For Ī“=6\delta=6, Clark et al.\ in 1998 established Ī³<0.3377n\gamma <0.3377 n, while Bir\'o et al. recently improved it to Ī³<0.3340n\gamma <0.3340 n. Here the bound is further improved to Ī³<0.3159n\gamma < 0.3159 n. For Ī“=7\delta=7, the best earlier bound 0.3088n0.3 088 n is improved to Ī³<0.2927n\gamma < 0.2927 n

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called ā€œcolorsā€ to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k āˆ’ 1), conļ¬rming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deļ¬ne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diļ¬€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique
    • ā€¦
    corecore