9,787 research outputs found

    Limited packings of closed neighbourhoods in graphs

    Full text link
    The k-limited packing number, Lk(G)L_k(G), of a graph GG, introduced by Gallant, Gunther, Hartnell, and Rall, is the maximum cardinality of a set XX of vertices of GG such that every vertex of GG has at most kk elements of XX in its closed neighbourhood. The main aim in this paper is to prove the best-possible result that if GG is a cubic graph, then L2(G)V(G)/3L_2(G) \geq |V (G)|/3, improving the previous lower bound given by Gallant, \emph{et al.} In addition, we construct an infinite family of graphs to show that lower bounds given by Gagarin and Zverovich are asymptotically best-possible, up to a constant factor, when kk is fixed and Δ(G)\Delta(G) tends to infinity. For Δ(G)\Delta(G) tending to infinity and kk tending to infinity sufficiently quickly, we give an asymptotically best-possible lower bound for Lk(G)L_k(G), improving previous bounds

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    Finding maximum k-cliques faster using lazy global domination

    Get PDF
    No abstract available
    corecore