206 research outputs found

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    Nonconforming finite element Stokes complexes in three dimensions

    Full text link
    Two nonconforming finite element Stokes complexes ended with the nonconforming P1P_1-P0P_0 element for the Stokes equation in three dimensions are constructed. And commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order H(grad curl)\boldsymbol H(\textrm{grad}~\textrm{curl})-nonconforming finite element only has 1414 degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The H(grad curl)\boldsymbol H(\textrm{grad}~\textrm{curl})-nonconforming elements are applied to solve the quad-curl problem, and optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem is decoupled into two mixed methods of the Maxwell equation and the nonconforming P1P_1-P0P_0 element method for the Stokes equation, based on which a fast solver is developed.Comment: 20 page

    p- and hp- virtual elements for the Stokes problem

    Full text link
    We analyse the p- and hp-versions of the virtual element method (VEM) for the the Stokes problem on a polygonal domain. The key tool in the analysis is the existence of a bijection between Poisson-like and Stokes-like VE spaces for the velocities. This allows us to re-interpret the standard VEM for Stokes as a VEM, where the test and trial discrete velocities are sought in Poisson-like VE spaces. The upside of this fact is that we inherit from [7] an explicit analysis of best interpolation results in VE spaces, as well as stabilization estimates that are explicit in terms of the degree of accuracy of the method. We prove exponential convergence of the hp-VEM for Stokes problems with regular right-hand sides. We corroborate the theoretical estimates with numerical tests for both the p- and hp-versions of the method
    • …
    corecore