50 research outputs found

    The clustering coefficient of a scale-free random graph

    Get PDF
    We consider a random graph process in which, at each time step, a new vertex is added with m out-neighbours, chosen with probabilities proportional to their degree plus a strictly positive constant. We show that the expectation of the clustering coefficient of the graph process is asymptotically proportional to (log n)/n. Bollobas and Riordan have previously shown that when the constant is zero, the same expectation is asymptotically proportional to ((log n)^2)/n

    Local majority dynamics on preferential attachment graphs

    Full text link
    Suppose in a graph GG vertices can be either red or blue. Let kk be odd. At each time step, each vertex vv in GG polls kk random neighbours and takes the majority colour. If it doesn't have kk neighbours, it simply polls all of them, or all less one if the degree of vv is even. We study this protocol on the preferential attachment model of Albert and Barab\'asi, which gives rise to a degree distribution that has roughly power-law P(x)1x3P(x) \sim \frac{1}{x^{3}}, as well as generalisations which give exponents larger than 33. The setting is as follows: Initially each vertex of GG is red independently with probability α<12\alpha < \frac{1}{2}, and is otherwise blue. We show that if α\alpha is sufficiently biased away from 12\frac{1}{2}, then with high probability, consensus is reached on the initial global majority within O(logdlogdt)O(\log_d \log_d t) steps. Here tt is the number of vertices and d5d \geq 5 is the minimum of kk and mm (or m1m-1 if mm is even), mm being the number of edges each new vertex adds in the preferential attachment generative process. Additionally, our analysis reduces the required bias of α\alpha for graphs of a given degree sequence studied by the first author (which includes, e.g., random regular graphs)
    corecore