3,334 research outputs found

    ARKCoS: Artifact-Suppressed Accelerated Radial Kernel Convolution on the Sphere

    Full text link
    We describe a hybrid Fourier/direct space convolution algorithm for compact radial (azimuthally symmetric) kernels on the sphere. For high resolution maps covering a large fraction of the sky, our implementation takes advantage of the inexpensive massive parallelism afforded by consumer graphics processing units (GPUs). Applications involve modeling of instrumental beam shapes in terms of compact kernels, computation of fine-scale wavelet transformations, and optimal filtering for the detection of point sources. Our algorithm works for any pixelization where pixels are grouped into isolatitude rings. Even for kernels that are not bandwidth limited, ringing features are completely absent on an ECP grid. We demonstrate that they can be highly suppressed on the popular HEALPix pixelization, for which we develop a freely available implementation of the algorithm. As an example application, we show that running on a high-end consumer graphics card our method speeds up beam convolution for simulations of a characteristic Planck high frequency instrument channel by two orders of magnitude compared to the commonly used HEALPix implementation on one CPU core while maintaining at typical a fractional RMS accuracy of about 1 part in 10^5.Comment: 10 pages, 6 figures. Submitted to Astronomy and Astrophysics. Replaced to match published version. Code can be downloaded at https://github.com/elsner/arkco

    Fast, exact CMB power spectrum estimation for a certain class of observational strategies

    Get PDF
    We describe a class of observational strategies for probing the anisotropies in the cosmic microwave background (CMB) where the instrument scans on rings which can be combined into an n-torus, the {\em ring torus}. This class has the remarkable property that it allows exact maximum likelihood power spectrum estimation in of order N2N^2 operations (if the size of the data set is NN) under circumstances which would previously have made this analysis intractable: correlated receiver noise, arbitrary asymmetric beam shapes and far side lobes, non-uniform distribution of integration time on the sky and partial sky coverage. This ease of computation gives us an important theoretical tool for understanding the impact of instrumental effects on CMB observables and hence for the design and analysis of the CMB observations of the future. There are members of this class which closely approximate the MAP and Planck satellite missions. We present a numerical example where we apply our ring torus methods to a simulated data set from a CMB mission covering a 20 degree patch on the sky to compute the maximum likelihood estimate of the power spectrum CC_\ell with unprecedented efficiency.Comment: RevTeX, 14 pages, 5 figures. A full resolution version of Figure 1 and additional materials are at http://feynman.princeton.edu/~bwandelt/RT

    Compressed sensing for wide-field radio interferometric imaging

    Full text link
    For the next generation of radio interferometric telescopes it is of paramount importance to incorporate wide field-of-view (WFOV) considerations in interferometric imaging, otherwise the fidelity of reconstructed images will suffer greatly. We extend compressed sensing techniques for interferometric imaging to a WFOV and recover images in the spherical coordinate space in which they naturally live, eliminating any distorting projection. The effectiveness of the spread spectrum phenomenon, highlighted recently by one of the authors, is enhanced when going to a WFOV, while sparsity is promoted by recovering images directly on the sphere. Both of these properties act to improve the quality of reconstructed interferometric images. We quantify the performance of compressed sensing reconstruction techniques through simulations, highlighting the superior reconstruction quality achieved by recovering interferometric images directly on the sphere rather than the plane.Comment: 15 pages, 8 figures, replaced to match version accepted by MNRA

    Orthogonal transforms and their application to image coding

    Get PDF
    Imperial Users onl

    The Unification and Decomposition of Processing Structures Using Lattice Theoretic Methods

    Get PDF
    The purpose of this dissertation is to demonstrate that lattice theoretic methods can be used to decompose and unify computational structures over a variety of processing systems. The unification arguments provide a better understanding of the intricacies of the development of processing system decomposition. Since abstract algebraic techniques are used, the decomposition process is systematized which makes it conducive to the use of computers as tools for decomposition. A general algorithm using the lattice theoretic method is developed to examine the structures and therefore decomposition properties of integer and polynomial rings. Two fundamental representations, the Sino-correspondence and the weighted radix representation, are derived for integer and polynomial structures and are shown to be a natural result of the decomposition process. They are used in developing systematic methods for decomposing discrete Fourier transforms and discrete linear systems. That is, fast Fourier transforms and partial fraction expansions of linear systems are a result of the natural representation derived using the lattice theoretic method. The discrete Fourier transform is derived from a lattice theoretic base demonstrating its independence of the continuous form and of the field over which it is computed. The same properties are demonstrated for error control codes based on polynomials. Partial fraction expansions are shown to be independent of the concept of a derivative for repeated roots and the field used to implement them
    corecore