344 research outputs found

    Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures

    Get PDF
    Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results

    A statistical approach for fracture property realization and macroscopic failure analysis of brittle materials

    Get PDF
    Lacking the energy dissipative mechanics such as plastic deformation to rebalance localized stresses, similar to their ductile counterparts, brittle material fracture mechanics is associated with catastrophic failure of purely brittle and quasi-brittle materials at immeasurable and measurable deformation scales respectively. This failure, in the form macroscale sharp cracks, is highly dependent on the composition of the material microstructure. Further, the complexity of this relationship and the resulting crack patterns is exacerbated under highly dynamic loading conditions. A robust brittle material model must account for the multiscale inhomogeneity as well as the probabilistic distribution of the constituents which cause material heterogeneity and influence the complex mechanisms of dynamic fracture responses of the material. Continuum-based homogenization is carried out via finite element-based micromechanical analysis of a material neighbor which gives is geometrically described as a sampling windows (i.e., statistical volume elements). These volume elements are well-defined such that they are representative of the material while propagating material randomness from the inherent microscale defects. Homogenization yields spatially defined elastic and fracture related effective properties, utilized to statistically characterize the material in terms of these properties. This spatial characterization is made possible by performing homogenization at prescribed spatial locations which collectively comprise a non-uniform spatial grid which allows the mapping of each effective material properties to an associated spatial location. Through stochastic decomposition of the derived empirical covariance of the sampled effective material property, the Karhunen-Loeve method is used to generate realizations of a continuous and spatially-correlated random field approximation that preserve the statistics of the material from which it is derived. Aspects of modeling both isotropic and anisotropic brittle materials, from a statistical viewpoint, are investigated to determine how each influences the macroscale fracture response of these materials under highly dynamic conditions. The effects of modeling a material both explicitly by representations of discrete multiscale constituents and/or implicitly by continuum representation of material properties is studies to determine how each model influences the resulting material fracture response. For the implicit material representations, both a statistical white noise (i.e., Weibull-based spatially-uncorrelated) and colored noise (i.e., Karhunen-Loeve spatially-correlated model) random fields are employed herein

    Mechanics of Materials

    Get PDF
    All up-to-date engineering applications of advanced multi-phase materials necessitate a concurrent design of materials (including composition, processing routes, microstructures and properties) with structural components. Simulation-based material design requires an intensive interaction of solid state physics, material physics and chemistry, mathematics and information technology. Since mechanics of materials fuses many of the above fields, there is a pressing need for well founded quantitative analytical and numerical approaches to predict microstructure-process-property relationships taking into account hierarchical stationary or evolving microstructures. Owing to this hierarchy of length and time scales, novel approaches for describing/ modelling non-equilibrium material evolution with various degrees of resolution are crucial to linking solid mechanics with realistic material behavior. For example, approaches such as atomistic to continuum transitions (scale coupling), multiresolution numerics, and handshaking algorithms that pass information to models with different degrees of freedom are highly relevant in this context. Many of the topics addressed were dealt with in depth in this workshop
    corecore