6,228 research outputs found

    The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter

    Full text link
    It has often been taken as a working assumption that directed links in information networks are frequently formed by "short-cutting" a two-step path between the source and the destination -- a kind of implicit "link copying" analogous to the process of triadic closure in social networks. Despite the role of this assumption in theoretical models such as preferential attachment, it has received very little direct empirical investigation. Here we develop a formalization and methodology for studying this type of directed closure process, and we provide evidence for its important role in the formation of links on Twitter. We then analyze a sequence of models designed to capture the structural phenomena related to directed closure that we observe in the Twitter data

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    From sparse to dense and from assortative to disassortative in online social networks

    Full text link
    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.Comment: 10 pages, 7 figures and 2 table

    Two types of well followed users in the followership networks of Twitter

    Get PDF
    In the Twitter blogosphere, the number of followers is probably the most basic and succinct quantity for measuring popularity of users. However, the number of followers can be manipulated in various ways; we can even buy follows. Therefore, alternative popularity measures for Twitter users on the basis of, for example, users' tweets and retweets, have been developed. In the present work, we take a purely network approach to this fundamental question. First, we find that two relatively distinct types of users possessing a large number of followers exist, in particular for Japanese, Russian, and Korean users among the seven language groups that we examined. A first type of user follows a small number of other users. A second type of user follows approximately the same number of other users as the number of follows that the user receives. Then, we compare local (i.e., egocentric) followership networks around the two types of users with many followers. We show that the second type, which is presumably uninfluential users despite its large number of followers, is characterized by high link reciprocity, a large number of friends (i.e., those whom a user follows) for the followers, followers' high link reciprocity, large clustering coefficient, large fraction of the second type of users among the followers, and a small PageRank. Our network-based results support that the number of followers used alone is a misleading measure of user's popularity. We propose that the number of friends, which is simple to measure, also helps us to assess the popularity of Twitter users.Comment: 4 Figures and 8 Table
    corecore