661 research outputs found

    A Framework for Designing 3d Virtual Environments

    Get PDF
    The process of design and development of virtual environments can be supported by tools and frameworks, to save time in technical aspects and focusing on the content. In this paper we present an academic framework which provides several levels of abstraction to ease this work. It includes state-of-the-art components we devised or integrated adopting open-source solutions in order to face specific problems. Its architecture is modular and customizable, the code is open-source.\u

    Performance evaluation of H.264/AVC decoding and visualization using the GPU

    Get PDF
    The coding efficiency of the H.264/AVC standard makes the decoding process computationally demanding. This has limited the availability of cost-effective, high-performance solutions. Modern computers are typically equipped with powerful yet cost-effective Graphics Processing Units (GPUs) to accelerate graphics operations. These GPUs can be addressed by means of a 3-D graphics API such as Microsoft Direct3D or OpenGL, using programmable shaders as generic processing units for vector data. The new CUDA (Compute Unified Device Architecture) platform of NVIDIA provides a straightforward way to address the GPU directly, without the need for a 3-D graphics API in the middle. In CUDA, a compiler generates executable code from C code with specific modifiers that determine the execution model. This paper first presents an own-developed H.264/AVC renderer, which is capable of executing motion compensation (MC), reconstruction, and Color Space Conversion (CSC) entirely on the GPU. To steer the GPU, Direct3D combined with programmable pixel and vertex shaders is used. Next, we also present a GPU-enabled decoder utilizing the new CUDA architecture from NVIDIA. This decoder performs MC, reconstruction, and CSC on the GPU as well. Our results compare both GPU-enabled decoders, as well as a CPU-only decoder in terms of speed, complexity, and CPU requirements. Our measurements show that a significant speedup is possible, relative to a CPU-only solution. As an example, real-time playback of high-definition video (1080p) was achieved with our Direct3D and CUDA-based H.264/AVC renderers

    3D APIs in Interactive Real-Time Systems: Comparison of OpenGL, Direct3D and Java3D.

    Get PDF
    Since the first display of a few computer-generated lines on a Cathode-ray tube (CRT) over 40 years ago, graphics has progressed rapidly towards the computer generation of detailed images and interactive environments in real time (Angel, 1997). In the last twenty years a number of Application Programmer's Interfaces (APIs) have been developed to provide access to three-dimensional graphics systems. Currently, there are numerous APIs used for many different types of applications. This paper will look at three of these: OpenGL, Direct3D, and one of the newest entrants, Java3D. They will be discussed in relation to their level of versatility, programability, and how innovative they are in introducing new features and furthering the development of 3D-interactive programming

    A Fast Fluid Simulator Using Smoothed-Particle Hydrodynamics

    Get PDF
    abstract: This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces within the fluid; this algorithm provides a Lagrangian approach for discretizes the Navier-Stockes equations into a set of particles. Our solution uses the DirectCompute compute shaders to evaluate each particle using the multithreading and multi-core capabilities of the GPU increasing the overall performance. The solution then describes a method for extracting the fluid surface using the Marching Cubes method and the programmable interfaces exposed by the DirectX pipeline. Particularly, this document presents a method for using the Geometry Shader Stage to generate the triangle mesh as defined by the Marching Cubes method. The implementation results show the ability to simulate over 64K particles at a rate of 900 and 400 frames per second, not including the surface reconstruction steps and including the Marching Cubes steps respectively.Dissertation/ThesisM.S. Computer Science 201

    An Investigation into Animating Plant Structures within Real-time Constraints

    Get PDF
    This paper is an analysis of current developments in rendering botanical structures for scientic and entertainment purposes with a focus on visualising growth. The choices of practical investigations produce a novel approach for parallel parsing of difficult bracketed L-Systems, based upon the work of Lipp, Wonka and Wimmer (2010). Alongside this is a general overview of the issues involved when looking at growing systems, technical details involving programming for the Graphics Processing Unit (GPU) and other possible solutions for further work that also could achieve the project's goals

    Data driven graphical applications:a fluid approach

    Get PDF
    The inclusion of high-level scripting functionality in state-of-the-art rendering APIs indicates a movement toward data-driven methodologies for structuring next generation rendering pipelines. A similar theme can be seen in the use of composition languages to deploy component software using selection and configuration of collaborating component implementations. In this paper we introduce the Fluid framework, which places particular emphasis on the use of high-level data manipulations in order to develop component based software that is flexible, extensible, and expressive. We introduce a data-driven, object oriented programming methodology to component based software development, and demonstrate how a rendering system with a similar focus on abstract manipulations can be incorporated, in order to develop a visualization application for geospatial data. In particular we describe a novel SAS script integration layer that provides access to vertex and fragment programs, producing a very controllable, responsive rendering system. The proposed system is very similar to developments speculatively planned for DirectX 10, but uses open standards and has cross platform applicability. © The Eurographics Association 2007
    • …
    corecore