26 research outputs found

    Fault-tolerant meshes with minimal numbers of spares

    Get PDF
    This paper presents several techniques for adding fault-tolerance to distributed memory parallel computers. More formally, given a target graph with n nodes, we create a fault-tolerant graph with n + k nodes such that given any set of k or fewer faulty nodes, the remaining graph is guaranteed to contain the target graph as a fault-free subgraph. As a result, any algorithm designed for the target graph will run with no slowdown in the presence of k or fewer node faults, regardless of their distribution. We present fault-tolerant graphs for target graphs which are 2-dimensional meshes, tori, eight-connected meshes and hexagonal meshes. In all cases our fault-tolerant graphs have smaller degree than any previously known graphs with the same properties

    Однородные сети с распределенной системой реконфигураций

    Get PDF
    Запропоновано метод та алгоритм реконфігурації розрядномодульних однорідних мереж (РМОМ) з розподіленою реконфігурацією резервних та функціонуючих модулів. Запропонований підхід може застосовуватися до РМОМ різної розмірності та призначення, в яких несправний модуль виявляється вбудованими засобами діагностування, а реконфігурація здійснюється під управлінням HOST процесора.This paper presents an effective reconfiguration method and algorithm of reconfiguring one and twodimensional degradable arrays with four – port switches, when processing elements of arrays become faulty

    Efficient algorithms for reconfiguration in VLSI/WSI arrays

    Get PDF
    The issue of developing efficient algorithms for reconfiguring processor arrays in the presence of faulty processors and fixed hardware resources is discussed. The models discussed consist of a set of identical processors embedded in a flexible interconnection structure that is configured in the form of a rectangular grid. An array grid model based on single-track switches is considered. An efficient polynomial time algorithm is proposed for determining feasible reconfigurations for an array with a given distribution of faulty processors. In the process, it is shown that the set of conditions in the reconfigurability theorem is not necessary. A polynomial time algorithm is developed for finding feasible reconfigurations in an augmented single-track model and in array grid models with multiple-track switche

    Fault-tolerant meshes and hypercubes with minimal numbers of spares

    Get PDF
    Many parallel computers consist of processors connected in the form of a d-dimensional mesh or hypercube. Two- and three-dimensional meshes have been shown to be efficient in manipulating images and dense matrices, whereas hypercubes have been shown to be well suited to divide-and-conquer algorithms requiring global communication. However, even a single faulty processor or communication link can seriously affect the performance of these machines. This paper presents several techniques for tolerating faults in d-dimensional mesh and hypercube architectures. Our approach consists of adding spare processors and communication links so that the resulting architecture will contain a fault-free mesh or hypercube in the presence of faults. We optimize the cost of the fault-tolerant architecture by adding exactly k spare processors (while tolerating up to k processor and/or link faults) and minimizing the maximum number of links per processor. For example, when the desired architecture is a d-dimensional mesh and k = 1, we present a fault-tolerant architecture that has the same maximum degree as the desired architecture (namely, 2d) and has only one spare processor. We also present efficient layouts for fault-tolerant two- and three-dimensional meshes, and show how multiplexers and buses can be used to reduce the degree of fault-tolerant architectures. Finally, we give constructions for fault-tolerant tori, eight-connected meshes, and hexagonal meshes

    Modeling the Effect of Redundancy on Yield and Performance of VLSI Systems

    Full text link

    Design and Scheduling for Periodic Concurrent Error Detection and Recovery in Processor Arrays

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Aeronautics and Space Administration / NASA NAG 1-613Joint Services Electronics Program / N00014-90-J-127

    Testing and reconfiguration of VLSI linear arrays

    Get PDF
    AbstractAchieving fault tolerance through incorporation of redundancy and reconfiguration is quite common. In this paper we study the fault tolerance of linear arrays of N processors with k bypass links whose maximum length is g. We consider both arrays with bidirectional links and unidirectional links.We first consider the problem of testing whether a set of n faulty processors is catastrophic, i.e., precludes reconfiguration. We provide new testing algorithms which improve and generalize known testing algorithms. For bidirectional arrays we provide an O(kn) time testing algorithm and for unidirectional arrays we provide an O(n) time algorithm for the case k = 1, and an O(kn log k) time algorithm, for the case k 1.When the fault pattern is not catastrophic we study the problem of finding an optimal reconfiguration of the array. We consider optimality with respect to two parameters: the size of the reconfigured array and the number of redundant links to activate. Considering optimality with respect to the size of the reconfigured array, we prove that the problem is NP-hard in the strong sense if the bypass links are bidirectional, while it can be solved in O(kng) time if the bypass links are unidirectional. Considering optimality with respect to the number of bypass links to activate, we prove that the problem can be solved in O(kn) time if the bypass links are bidirectional, and in O(kng) time if the bypass links are unidirectional

    Stack-number is not bounded by queue-number

    Full text link
    We describe a family of graphs with queue-number at most 4 but unbounded stack-number. This resolves open problems of Heath, Leighton and Rosenberg (1992) and Blankenship and Oporowski (1999)
    corecore