288,049 research outputs found

    Flight array processor

    Get PDF
    Spaceflight applications for the NASA Scatterometer (NSCAT) , an ocean surface wind measuring system flown as part of the Navy Remote Ocean Sensing System (NROSS) are discussed in outline form, along with information on the Advanced Digital Synthetic aperture radar Processor (ADSP) that is being developed for ground-based processing of spacecraft Earth observations. Design considerations are listed. A block diagram of the scatterometer is given

    Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans

    Get PDF
    The silicate rock weathering followed by the formation of carbonate rocks in the ocean, transfers CO2 from the atmosphere to the lithosphere. This CO2 uptake plays a major role in the regulation of atmospheric CO2 concentrations at the geologic timescale and is mainly controlled by the chemical properties of rocks. This leads us to develop the first world lithological map with a grid resolution of 1 1. This paper analyzes the spatial distribution of the six main rock types by latitude, continents, and ocean drainage basins and for 49 large river basins. Coupling our digital map with the GEM-CO2 model, we have also calculated the amount of atmospheric/soil CO2 consumed by rock weathering and alkalinity river transport to the ocean. Among all silicate rocks, shales and basalts appear to have a significant influence on the amount of CO2 uptake by chemical weatherin

    Life without the Beach: Projected Sea Level Rise and its Impact on Barrier Islands Along the East Coast, USA

    Full text link
    As climate change is becoming a global issue, the impact of sea level rise is increasingly becoming a threat to humans, wildlife, infrastructure, and ecosystems. To evaluate the effects of sea level rise on barrier islands and coastal regions, we studied future projections of sea level rise at Ocean City and Assateague Island, Maryland. We hypothesize that the sea levels at Assateague and Ocean City will have different beach profiles, and will show different levels of flooding through the Representative Concentration Pathways (RCP) simulations. We measured beach profiles at four locations, two at Ocean City and two at Assateague Island, to view the current beach profiles and found that Ocean City reveals a smaller average change in elevation compared to Assateague. We also used a LiDAR Digital Elevation Model (DEM) of Ocean City and Assateague Island to run RCP 2.6, RCP 4.5, and RCP 8.5 simulations using GIS to represent the Intergovernmental Panel on Climate Change (IPCC) projected sea level rise for the year 2100. We found that Ocean City has higher predicted percentages of flooded land but smaller areas of flooded land compared to Assateague. These results indicate that significant areas of both Ocean City and Assateague Island will be flooded by 2100 regardless of which RCP simulation might be true. However, it is projected that the RCP 2.6 simulation is an underestimation of potential flooding and the future will more closely resemble the RCP 8.5 simulation if drastic precautions are not taken now. This will severely impact ecosystems, economies, and human life

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft

    Theoretical and experimental studies in support of the geophysical fluid flow experiment

    Get PDF
    Computer programming was completed for digital acquisition of temperature and velocity data generated by the Geophysical Fluid Flow Cell (GFFC) during the upcoming Spacelab 3 mission. A set of scenarios was developed which covers basic electro-hydrodynamic instability, highly supercritical convection with isothermal boundaries, convection with imposed thermal forcing, and some stably stratified runs to look at large-scale thermohaline ocean circulations. The extent to which the GFFC experimental results apply to more complicated circumstances within the Sun or giant planets was assessed

    The results of initial analysis of OSTA-1/Ocean Color Experiment (OCE) imagery

    Get PDF
    Ocean view images from the Ocean Color Experiment (OCE) were produced at three widely separated locations on the Earth. Digital computer enhancement and band ratioing techniques were applied to radiometrically corrected OCE spectral data to emphasize patterns of chlorophyll distribution and, in one shallow, clear water case, bottom topography. The chlorophyll pattern in the Yellow Sea between China and Korea was evident in a scene produced from Shuttle Orbit 24. The effects of the discharge from the Yangtze and other rivers were also observed. Two scenes from orbits 30 and 32 revealed the movement of patches of plankton in the Gulf of Cadiz. Geometrical corrections to these images permitted the existing ocean current velocities in the vicinity to be deduced. The variability in water depth over the Grand Bahama Bank was estimated by using the blue-green OCE channel. The very clear water conditions in the area caused bottom reflected sunlight to produce a sensor signal which was related inversely to the depth of the water

    Engineering studies related to Skylab program

    Get PDF
    The relationship between the S-193 Automatic Gain Control data and the magnitude of received signal power was studied in order to characterize performance parameters for Skylab equipment. The r-factor was used for the assessment and is defined to be less than unity, and a function of off-nadir angle, ocean surface roughness, and receiver signal to noise ratio. A digital computer simulation was also used to assess to additive receiver, or white noise. The system model for the digital simulation is described, along with intermediate frequency and video impulse response functions used, details of the input waveforms, and results to date. Specific discussion of the digital computer programs used is also provided

    Development of a Real-time Digital Acquisition Software System for the Ocean Optics S1000 Spectrometer

    Get PDF
    The objective of the M. Phil degree project was to improve the digital acquisition speed of the existing Ocean Optic I/O S1000 spectrometer system. Research carried out prior to this research work indicated that the existing system, although allowing for successful spectroscopic measurements, did not provide for a true time-base required for time-resolved spectroscopy. The analogue/digital speed aspects of the I/O were investigated and shortcomings were found in the digital I/O of the system. These shortcomings were investigated and the existing Ocean Optics software was found to have a considerable role in the lack of overall acquisition speed. Various Ocean Optics software were tested and the digital acquisition performance was observed to be worse for newer modern Windows based Ocean Optics software than the older DOS based Ocean Optics software. A novel approach based on interrupting control of the computer to concentrate maximum processor speed to acquire the digital I/O as fast as possible was embarked upon. The approach allowed real-time analogue signals to be digitally converted and acquired to computer memory. Based upon these real-time speeds, a real-time digital acquisition system to control the S1000 spectrometer I/O system was designed and tested out in the graphical user-friendly LabVIEW environment. These tests showed that the interrupt based digital acquisition system allowed novel optimum time-resolved spectroscopic measurements to be carried out

    Potential applications of digital, visible, and infrared data from geostationary environmental satellites

    Get PDF
    An hourly, digital data base from the Visible/Infrared Spin-Scan Radiometer (VISSR) instrument on the GOES-1 and SMS-2 geostationary satellites is described. Several examples of developmental applications of these quantitative digital data are presented. These include a review of recent attempts to develop products that are of use to meteorologists who provide services to aviation, agriculture, forestry, hydrology, oceanography, and climatology. The sample products include high resolution thermal gradients of land and ocean surfaces, thermal change analyses, fruit frost/freeze application, cloud-top altitude analysis, analysis of hurricane characteristics, and analyses of solar insolation
    • …
    corecore