4,371 research outputs found

    Precise vehicle location as a fundamental parameter for intelligent selfaware rail-track maintenance systems

    Get PDF
    The rail industry in the UK is undergoing substantial changes in response to a modernisation vision for 2040. Development and implementation of these will lead to a highly automated and safe railway. Real-time regulation of traffic will optimise the performance of the network, with trains running in succession within an adjacent movable safety zone. Critically, maintenance will use intelligent trainborne and track-based systems. These will provide accurate and timely information for condition based intervention at precise track locations, reducing possession downtime and minimising the presence of workers in operating railways. Clearly, precise knowledge of trains’ real-time location is of paramount importance. The positional accuracy demand of the future railway is less than 2m. A critical consideration of this requirement is the capability to resolve train occupancy in adjacent tracks, with the highest degree of confidence. A finer resolution is required for locating faults such as damage or missing parts, precisely. Location of trains currently relies on track signalling technology. However, these systems mostly provide an indication of the presence of trains within discrete track sections. The standard Global Navigation Satellite Systems (GNSS), cannot precisely and reliably resolve location as required either. Within the context of the needs of the future railway, state of the art location technologies and systems were reviewed and critiqued. It was found that no current technology is able to resolve location as required. Uncertainty is a significant factor. A new integrated approach employing complimentary technologies and more efficient data fusion process, can potentially offer a more accurate and robust solution. Data fusion architectures enabling intelligent self-aware rail-track maintenance systems are proposed

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense

    Railway freight transport and logistics: Methods for relief, algorithms for verification and proposals for the adjustment of tunnel inner surfaces

    Get PDF
    In Europe, the attention to efficiency and safety of international railway freight transport has grown in recent years and this has drawn attention to the importance of verifying the clearance between vehicle and lining, mostly when different and variable rolling stock types are expected. This work consists of defining an innovative methodology, with the objective of surveying the tunnel structures, verifying the clearance conditions, and designing a retrofitting work if necessary. The method provides for the use of laser scanner, thermocameras, and ground penetrating radar to survey the geometrical and structural conditions of the tunnel; an algorithm written by the authors permits to verify the clearances. Two different types of works are possible if the inner tunnel surfaces interfere with the profile of the rolling stock passing through: modification of the railroad track or modification of the tunnel intrados by mean milling of its lining. The presented case study demonstrates that the proposed methodology is useful for verifying compatibility between the design vehicle gauge and the existing tunnel intrados, and to investigate the chance to admit rolling stocks from different states. Consequently, the results give the railway management body a chance to perform appropriate measurements in those cases where the minimum clearance requirements are not achieved

    Train Wrecks and Track Attacks: An Analysis of Attempts by Terrorists and Other Extremists to Derail Trains or Disrupt Rail Transportation

    Get PDF
    Attempts to sabotage rails and deliberately derail passenger trains have a long history in conventional and guerrilla warfare as well as during some particularly bitter labor disputes in the past. Since the 1970s, political fanatics have become a major adversary. Terrorists have sought to derail trains to achieve high-casualty events, while anarchists and issue oriented extremists have attacked rails to attract attention to their causes and impose economic damage. In this report, we examine the more than a thousand attempts to derail trains and to attack rail infrastructure to discern overall patterns and trends. We then look at four subsets of attacks in greater detail: those by India’s Maoist guerrillas; those by separatist insurgents in Thailand; those by various jihadist groups worldwide; and those by an assemblage of anarchists, environmental and similar cause-oriented extremists in Europe. How do these adversaries compare in terms of tactics, success rates, lethality, and other factors? Do their different objectives and circumstances affect their actions? Perhaps most important, is there evidence that they become more effective and lethal over time

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    Digital transformation in the visual inspection of heritage railways tunnels: Technology, artificial intelligence and methodology

    Get PDF
    The knowledge, the preservation and the maintenance of heritage infrastructures is one of the most challenging matters facing modern civilization. It involves, in inextricable patterns, factors belonging to different fields (cultural, humanistic, social, technical, economical, administrative) coupled with the requirements of safety that can be in conflict with the integrity of part of the infrastructure. For these reasons, it is fundamental to carry out investigations and new planning strategies to know and predict the conditions of very old structures. The paper focused on heritage railway tunnels, one of the most crucial elements of the railway infrastructures in Europe. ETS Srl introduced a new method for diagnostic of existing tunnels through multi-dimensional mobile mapping systems, and a new approach for the Management and Identification of the Risk for Existing Tunnels. The approach belongs to the digital strategies for infrastructure maintenance that are very fast and minimally invasive. The integrated instrumentation allows to have almost all the information necessary for the diagnostics of a structure with non-destructive tests, preserving the integrity of very old structures in a phase of preliminary assessment. In such a way, the process of visual inspection is automatized and back-officed. The results, in terms of defects on the structures, are digitalized and manipulated in different IT environments. The results can be incorporated in the information modelling and virtual reality inspections. The use of artificial intelligence will be necessary to speed-up the back-office phase and introduce the technologies as a new inspection standard. A case study for the application is presented through the methodologies, including some preliminary applications of AI algorithms for the detection of water defects

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Multidimensional mobile mapping and integrated approach for the digitalisation of underground transport infrastructure

    Get PDF
    The tunnel industry has started focusing on the maintenance and management challenges of an existing infrastructure. It is an urgent matter in industrialised countries, where the stakeholders’ attention is increasing at a fast pace considering the incidents and the disruptions caused by improper monitoring and maintenance. This paper presents an innovative methodology to survey and inspect existing railway tunnels through multi-dimensional mobile mapping systems. The proposed approach belongs to the digital strategies for infrastructure maintenance. An integrated multidimensional survey system (ARCHITA) allows for collecting information necessary for the diagnostics of a structure with non-destructive tests. Linear cameras, thermographic cameras, and ground-penetrating radars acquire data to be digitalised and manipulated in different IT environments. The results, in terms of the collected data on structural defects, allow for a new approach for the Management and Identification of the Risk for Existing Tunnels (MIRET). The innovative approach aims at a smart integration of information and models for the Facility Management of the transport system. The workflow for the digitalisation and diagnosis from mobile mapping data has been implemented on two 40km-long metro tunnels

    Formulating a Strategy for Securing High-Speed Rail in the United States, Research Report 12-03

    Get PDF
    This report presents an analysis of information relating to attacks, attempted attacks, and plots against high-speed rail (HSR) systems. It draws upon empirical data from MTI’s Database of Terrorist and Serious Criminal Attacks Against Public Surface Transportation and from reviews of selected HSR systems, including onsite observations. The report also examines the history of safety accidents and other HSR incidents that resulted in fatalities, injuries, or extensive asset damage to examine the inherent vulnerabilities (and strengths) of HSR systems and how these might affect the consequences of terrorist attacks. The study is divided into three parts: (1) an examination of security principles and measures; (2) an empirical examination of 33 attacks against HSR targets and a comparison of attacks against HSR targets with those against non-HSR targets; and (3) an examination of 73 safety incidents on 12 HRS systems. The purpose of this study is to develop an overall strategy for HSR security and to identify measures that could be applied to HSR systems currently under development in the United States. It is hoped that the report will provide useful guidance to both governmental authorities and transportation operators of current and future HSR systems

    Evaluation of new technologies to support asset management of metro systems

    Get PDF
    Since 1930, London Underground Limited (LUL) has performed visual inspections to understand the condition of the physical assets such as tunnels, bridges and structures. The major problem with this kind of inspection is the lack in quality of the data, as it depends on the ability of the inspector to assess and interpret the condition of the asset both accurately and with repeatability. In addition, data collection is time-consuming and, therefore, costly when the whole of the metro network needs to be regularly inspected and there are limited periods when access is available. The problems associated with access to the infrastructure have increased significantly with the implementation of the night tube and will increase further as the night tube is extended over the next 5 to 10 years. To determine the condition of metro assets and to predict the need for intervention, monitoring the changes in the assets’ condition is key to any further evaluation and maintenance planning. This thesis presents the outcomes of using new technologies such as Thermography, Kinematic and Static Laser Scanning, Close-Range Photogrammetry and Total Station to measure defects, such as water seepage, mortar loss in joints, lining face loss (in brick tunnels), cracks, corrosion, voids, cavities and spalls. Each technique is explored through three case studies that evaluate the performance and limitation in the determination of the asset condition. The first case study was performed to compare and contrast the use of Euroconsult’s high definition laser survey against a Principal Inspection Report to determine the level of consistency in predicting the asset condition. During this case study, reports from laser surveys and principal inspections of brick tunnels and covered ways were compared. This analysis showed that a direct comparison between the two inspections is not appropriate because the laser inspection does not capture all the defects mentioned in the Engineering Standard S1060. It also showed that to close the gap between the laser survey and visual inspection, laser surveys would have to be performed every year in brick tunnels and then compare any changes in asset condition with that from the previous scan. The second case study was performed using Infrared Thermography (IRT) to identify water seepage in the brick tunnels as well as test the system in a configuration that would allow the survey to be done from an engineering train. A set of calibration tests were performed in the lab and later the technique was trialled on an engineering train. The results showed that it is possible to measure the level of moisture on specific parts of the lining and that the comparison of surveys performed at different times can allow asset managers to react before a seepage is established, potentially reducing the risk of system disruption caused by water ingress in tunnels. The data also revealed that this technique could be used for other purposes, such as examining the condition of other assets such as brackets, cable supports and broken light bulbs. The third case study was performed using a Terrestrial Laser Scanner, Close-Range Photogrammetry and Total Station Survey to identify defects in structures. In order to test these technologies, a wing wall, located on the north-east wing of the HC3 underbridge at Ladbroke Grove Station, was chosen. This case study demonstrated that LUL can easily implement this type of technology to inspect rapidly their buildings and structures, being able to identify defects and monitor their assets for translation, rotation and changes in shape during changes in loading or the decay of the structure (insidious decline) and the construction of nearby assets. In this research, a large volume of data was captured, and further work is needed in order to manage the data using ‘big data’ concepts. Although it may not be possible to fully understand the insidious decline of an asset, the use of these techniques allows us to better understand how a civil asset behaves, potentially reducing the amount of reactive maintenance to a minimum, consequently reducing service costs and falls in revenue due to disruptions in the system. To successfully analyse the data from new technologies a combination of skills is required and different or retrained personal will be needed
    corecore