7,617 research outputs found

    Teaching introductory undergraduate Physics using commercial video games

    Get PDF
    Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate physics. The examples are selected from a course taught predominantly through the medium of commercial video games.Comment: Accepted to Physics Education, Fig1 does not render properly in this versio

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912

    Complexity and Philosophy

    Get PDF
    The science of complexity is based on a new way of thinking that stands in sharp contrast to the philosophy underlying Newtonian science, which is based on reductionism, determinism, and objective knowledge. This paper reviews the historical development of this new world view, focusing on its philosophical foundations. Determinism was challenged by quantum mechanics and chaos theory. Systems theory replaced reductionism by a scientifically based holism. Cybernetics and postmodern social science showed that knowledge is intrinsically subjective. These developments are being integrated under the header of “complexity science”. Its central paradigm is the multi-agent system. Agents are intrinsically subjective and uncertain about their environment and future, but out of their local interactions, a global organization emerges. Although different philosophers, and in particular the postmodernists, have voiced similar ideas, the paradigm of complexity still needs to be fully assimilated by philosophy. This will throw a new light on old philosophical issues such as relativism, ethics and the role of the subject

    Complexity: The bigger picture

    Full text link
    If a concept is not well defined, there are grounds for its abuse. This is particularly true of complexity, an inherently interdisciplinary concept that has penetrated very different fields of intellectual activity from physics to linguistics, but with no underlying, unified theory. Complexity has become a popular buzzword used in the hope of gaining attention or funding -- institutes and research networks associated with complex systems grow like mushrooms. Why and how did it happen that this vague notion has become a central motif in modern science? Is it only a fashion, a kind of sociological phenomenon, or is it a sign of a changing paradigm of our perception of the laws of nature and of the approaches required to understand them? Because virtually every real system is inherently extremely complicated, to say that a system is complex is almost an empty statement - couldn't an Institute of Complex Systems just as well be called an Institute for Almost Everything? Despite these valid concerns, the world is indeed made of many highly interconnected parts over many scales, whose interactions result in a complex behaviour needing separate interpretation for each level. This realization forces us to appreciate that new features emerge as one goes from one scale to another, so it follows that the science of complexity is about revealing the principles governing the ways by which these new properties appear.Comment: Concepts essay, published in Nature http://www.nature.com/nature/journal/v418/n6894/full/418131a.htm

    Development of a dynamic virtual reality model of the inner ear sensory system as a learning and demonstrating tool

    Get PDF
    In order to keep track of the position and motion of our body in space, nature has given us a fascinating and very ingenious organ, the inner ear. Each inner ear includes five biological sensors - three angular and two linear accelerometers - which provide the body with the ability to sense angular and linear motion of the head with respect to inertial space. The aim of this paper is to present a dynamic virtual reality model of these sensors. This model, implemented in Matlab/Simulink, simulates the rotary chair testing which is one of the tests carried out during a diagnosis of the vestibular system. High-quality 3D-animations linked to the Simulink model are created using the export of CAD models into Virtual Reality Modeling Language (VRML) files. This virtual environment shows not only the test but also the state of each sensor (excited or inhibited) in real time. Virtual reality is used as a tool of integrated learning of the dynamic behavior of the inner ear using ergonomic paradigm of user interactivity (zoom, rotation, mouse interaction,…). It can be used as a learning and demonstrating tool either in the medicine field - to understand the behavior of the sensors during any kind of motion - or in the aeronautical field to relate the inner ear functioning to some sensory illusions

    Three-dimensional Web-based Physics Simulation Application For Physics Learning Tool

    Full text link
    The purpose of this research is to present a multimedia application for doing simulation in Physics. The application is a web based simulator that implementing HTML5, WebGL, and JavaScript. The objects and the environment will be in three dimensional views. This application is hoped will become the substitute for practicum activity. The current development is the application only covers Newtonian mechanics. Questionnaire and literature study is used as the data collecting method. While Waterfall Method used as the design method. The result is Three-DimensionalPhysics Simulator as online web application. Three-Dimensionaldesign and mentor-mentee relationship is the key features of this application. The conclusion made is Three-DimensionalPhysics Simulator already fulfilled in both design and functionality according to user. This application also helps them to understand Newtonian mechanics by simulation. Improvements are needed, because this application only covers Newtonian Mechanics. There is a lot possibility in the future that this simulation can also covers other Physics topic, such as optic, energy, or electricity
    • …
    corecore