3,750 research outputs found

    The deterministic Dendritic Cell Algorithm

    Get PDF
    The Dendritic Cell Algorithm is an immune-inspired algorithm originally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to analyse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm

    Multiscale Finite-Difference-Diffusion-Monte-Carlo Method for Simulating Dendritic Solidification

    Full text link
    We present a novel hybrid computational method to simulate accurately dendritic solidification in the low undercooling limit where the dendrite tip radius is one or more orders of magnitude smaller than the characteristic spatial scale of variation of the surrounding thermal or solutal diffusion field. The first key feature of this method is an efficient multiscale diffusion Monte-Carlo (DMC) algorithm which allows off-lattice random walkers to take longer and concomitantly rarer steps with increasing distance away from the solid-liquid interface. As a result, the computational cost of evolving the large scale diffusion field becomes insignificant when compared to that of calculating the interface evolution. The second key feature is that random walks are only permitted outside of a thin liquid layer surrounding the interface. Inside this layer and in the solid, the diffusion equation is solved using a standard finite-difference algorithm that is interfaced with the DMC algorithm using the local conservation law for the diffusing quantity. Here we combine this algorithm with a previously developed phase-field formulation of the interface dynamics and demonstrate that it can accurately simulate three-dimensional dendritic growth in a previously unreachable range of low undercoolings that is of direct experimental relevance.Comment: RevTeX, 16 pages, 10 eps figures, submitted to J. Comp. Phy

    Multiscale Random-Walk Algorithm for Simulating Interfacial Pattern Formation

    Full text link
    We present a novel computational method to simulate accurately a wide range of interfacial patterns whose growth is limited by a large scale diffusion field. To illustrate the computational power of this method, we demonstrate that it can be used to simulate three-dimensional dendritic growth in a previously unreachable range of low undercoolings that is of direct experimental relevance.Comment: 4 pages RevTex, 6 eps figures; substantial changes in presentation, but results and conclusions remain the sam

    Identification of the transition rule in a modified cellular automata model: the case of dendritic NH4Br crystal growth

    Get PDF
    A method of identifying the transition rule, encapsulated in a modified cellular automata (CA) model, is demonstrated using experimentally observed evolution of dendritic crystal growth patterns in NH4Br crystals. The influence of the factors, such as experimental set-up and image pre-processing, colour and size calibrations, on the method of identification are discussed in detail. A noise reduction parameter and the diffusion velocity of the crystal boundary are also considered. The results show that the proposed method can in principle provide a good representation of the dendritic growth anisotropy of any system

    The role of type 4 phosphodiesterases in generating microdomains of cAMP: Large scale stochastic simulations

    Get PDF
    Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons
    • …
    corecore