10 research outputs found

    Nonlinear Dynamics and Control of Aerial Robots

    Get PDF
    Aerial robotics is one of the fastest growing industry and has a number of evolving applications. Higher agility make aerial robots ideal candidate for applications like rescue missions especially in difficult to access areas. This chapter first derives the complete nonlinear dynamics of an aerial robot consisting of a quadcopter with a two-link robot manipulator. Precise control of such an aerial robot is a challenging task due to the fact that the translational and rotational dynamics of the quadcopter are strongly coupled with the dynamics of the manipulator. We extend our previous results on the control of quadrotor UAVs to the control of aerial robots. In particular, we design a backstepping and Lyapunov-based nonlinear feedback control law that achieves point-to-point control of the areal robot. The effectiveness of this feedback control law is illustrated through a simulation example

    A Second-Order Sliding Mode Controller Design for Spacecraft Tracking Control

    Get PDF
    For spacecraft attitude tracking system, there exists the chattering phenomenon. In this paper, the spacecraft motion is decomposed into three-channel subsystems, and a second-order sliding mode control is proposed. This method has been proved to have good convergence and robustness. Combined with the proposed sliding surface, the three-channel controllers are designed. The control performance is confirmed by the simulation results, the approaching process is improved effectively, and a smooth transition is achieved without overshoot and buffeting

    Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge

    Get PDF
    A passive fault tolerant control scheme is proposed for the full reentry trajectory tracking of a hypersonic vehicle in the presence of modelling uncertainties, external disturbances, and actuator faults. To achieve this goal, the attitude error dynamics with relative degree two is formulated first by ignoring the nonlinearities induced by the translational motions. Then, a multivariable twisting controller is developed as a benchmark to ensure the precise tracking task. Theoretical analysis with the Lyapunov method proves that the attitude tracking error and its first-order derivative can simultaneously converge to the origin exponentially. To depend less on the model knowledge and reduce the system uncertainties, an incremental twisting fault tolerant controller is derived based on the incremental nonlinear dynamic inversion control and the predesigned twisting controller. Notably, the proposed controller is user friendly in that only fixed gains and partial model knowledge are required

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame

    Control Backstepping de un robot Scara con incertidumbre paramétrica

    Get PDF
    One of the typical problems of model-based control strategies is impact on control system performance due to non-modeled dynamics, parametric uncertainty and dynamic coupling. This paper offers a control strategy under a back stepping approach in order to ensure stability into a closed loop of a 4-dof Scara manipulator, and also to generate a system with robustness against parametric uncertainties, without increase control efforts.Uno de los principales problemas en el control por modelo de referencia es que las dinámicas no modeladas, la incertidumbre paramétrica y el acoplamiento dinámico, afectan el desempeño del sistema de control. Este artículo presenta una estrategia de control bajo el enfoque back-stepping, con el fin de garantizar en primera instancia la estabilidad en lazo cerrado del sistema de control de un manipulador Scaracara de 4º de libertad, y en segunda instancia generar un sistema que sea robusto ante incertidumbres paramétricas, sin presentar grandes esfuerzos de control

    Fault recovery of an under-actuated quadrotor aerial vehicle

    Get PDF
    The research on autonomous flying robots has intensified considerably due to recent growth of civilian and military interests in Unmanned Aerial Vehicles (UAV). Miniature UAVs with the ability to vertically take off and land such as quadrotor aerial vehicles exhibit further advantages and features in maneuverability that have recently gained interest among the research community. Reliability of control systems require robustness and fault tolerance in presence of anomalies and unexpected failures in actuators, sensors or subsystems. Autonomy of dynamical systems that are vulnerable to the above failures has been an important topic of research during the past several years. Particularly, in small aerial vehicles due to hardware redundancy limitations design of a reliable control system plays an important role in ensuring acceptable and efficient performance. In view of the above, an autonomous recovery from actuators faults in under-actuated quadrotor aerial vehicles constitutes the main focus of the research investigated in this dissertation. A self-recovery mechanism, which extends the capabilities of the quadrotor system to operate under the presence of actuator faults is developed. The solution proposed takes into account the management of the control authority in the system by taking advantage of the post-fault model of an actuator. The first step in accomplishing this task is achieved by developing a controller under healthy condition that guarantees the stability of the quadrotor system in response to the commanded trajectories. This controller is then extended to incorporate the effects of a certain type of actuators fault by estimating the post-fault model of the system and then by properly commanding the faulty actuators accordingly. The performance of the proposed fault recovery scheme in presence of noise in the input and output channels and under different fault severities is evaluated through numerical simulations. It is shown that a significant reduction in the average tracking steady state errors are obtained through the application of the proposed recovery mechanism. The proposed scheme is applicable to rotorcraft systems even in presence of multiple faults in actuators

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Rotorcraft Flight Dynamics and Control in Wind for Autonomous Sampling of Spatiotemporal Processes

    Get PDF
    In recent years, there has been significant effort put into the design and use small, autonomous, multi-agent, aerial teams for a variety of military and commercial applications. In particular, small multi-rotor systems have been shown to be especially useful for carrying sensors as they have the ability to rapidly transit between locations as well as hover in place. This dissertation seeks to use multi-agent teams of autonomous rotorcraft to sample spatiotemporal fields in windy conditions. For many sampling objectives, there is the problem of how to accomplish the sampling objective in the presence of strong wind fields caused by external means or by other rotorcraft flying in close proximity. This dissertation develops several flight control strategies for both wind compensation, using nonlinear control techniques, and wind avoidance, using artificial potential-based control. To showcase the utility of teams of unmanned rotorcraft for spatiotemporal sampling, optimal algorithms are developed for two sampling objectives: (1) sampling continuous spatiotemporal fields modeled as Gaussian processes, and (2) optimal motion planning for coordinated target detection, which is an example of a discrete spatiotemporal field. All algorithms are tested in simulation and several are tested in a motion capture based experimental testbed
    corecore