418 research outputs found

    The Design of an asynchronous VHDL synthesizer

    Get PDF
    Abstract This paper presents a straightforward approach for synthesizing a standard VHDL description of an asynchronous circuit from a behavioural VHDL description. The asynchronous circuit style is based on`micropipelines', a style currently used to develop asynchronous microprocessors at Manchester University. The rules of partition and conversion which are used to implement the synthesizer are also described. The synthesizer greatly reduces the design time of a complex micropipeline circuit

    Architectural choices for the Columbia 0.8 Teraflops machine

    Full text link
    We discuss the hardware design choices made in our 16K-node 0.8 Teraflops supercomputer project, a machine architecture optimized for full QCD calculations. The efficiency of the conjugate gradient algorithm in terms of balance of floating-point operations, memory handling and utilization, and communication overhead is addressed. We also discuss the technological innovations and software tools that facilitate hardware design and what opportunities these give to the academic community.Comment: Contribution to Lattice 94. 3 pages. Latex source followed by compressed, uuenocded postscript file of the complete pape

    ToPoliNano: Nano-magnet Logic Circuits Design and Simulation

    Get PDF
    Among the emerging technologies Field-Coupled devices like Quantum dot Cellular Automata are particularly interesting. Of all the practical implementations of this principle NanoMagnet Logic shows many important features, such as a very low power consumption and the feasibility with up-to- date technology. However, its working principle, based on the interaction among neighbor cells, is quite different with respect to CMOS devices behavior. Dedicated design and simulation tools for this technology are necessary to further study this technology, but at the moment there are no such tools available in the scientific scenario. We present here ToPoliNano, a software developed as a design and simulation tool for NanoMagnet Logic, that can be easily adapted to many others emerging technologies, particularly to any kind of Field-Coupled devices. ToPoliNano allows to design circuits following a top-down approach similar to the one used in CMOS and to simulate them using a switch model specifically targeted for high complexity circuits. This tool greatly enhances the ability to analyze, explore and improve the design of Field- Coupled circuit

    A proposed synthesis method for Application-Specific Instruction Set Processors

    Get PDF
    Due to the rapid technology advancement in integrated circuit era, the need for the high computation performance together with increasing complexity and manufacturing costs has raised the demand for high-performance con fi gurable designs; therefore, the Application-Speci fi c Instruction Set Processors (ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a commonly used technique, but the automated hardware model generation is less frequently applied in terms of fi nal RTL implementations. Contrary to this, the fi nal register-transfer level models are usually created, at least partly, manually. This paper presents a novel approach for automated hardware model generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language (Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The proposed AMDL-based pre-synthesis method is based on a set of pre-de fi ned VHDL implementation schemes, which ensure the qualities of the automatically generated register-transfer level models in terms of resource requirement and operation frequency. The design framework implementing the algorithms required by the synthesis method is also presented

    A 16-bit CORDIC rotator for high-performance wireless LAN

    No full text
    In this paper we propose a novel 16-bit low power CORDIC rotator that is used for high-speed wireless LAN. The algorithm converges to the final target angle by adaptively selecting appropriate iteration steps while keeping the scale factor virtually constant. The VLSI architecture of the proposed design eliminates the entire arithmetic hardware in the angle approximation datapath and reduces the number of iterations by 50% on an average. The cell area of the processor is 0.7 mm2 and it dissipates 7 mW power at 20 MHz frequency
    • 

    corecore