1,212 research outputs found

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Microwave Beamforming Networks for Intelligent Transportation Systems

    Get PDF

    Research study on inter-vehicle communication implementation in Malaysia

    Get PDF
    Vehicle-to-Vehicle (V2V) communications systems have recently drawn great attention, because they have the potential to improve convenience and safety of car traffic. Road accidents take the life of many people in the world each year, and much more people have been injuring and maiming. Statistical studies show that accidents could be avoid by 60% if drivers were informed only half a second before the accident. The objective of this report is to make an analysis of the possibility of implementing this technology in Malaysia. This research study is as guidance to develop a concept of V2V system. Applications with early deadlines are expected to require direct V2V communications, and the only standard currently supporting this is the IEEE 802.11p, included in the wireless access in vehicular environment (WAVE). The combination of WAVE and GPS is a good idea to forming collision avoidance system. The GPS system determines the location of vehicles and the WAVE system forming an ad- hoc peer-to-peer networking among the vehicles.V2V communication enable vehicle to communicate with their neighbouring vehicles even in the absence of a central base station to provide a safer and more efficient roads and to increase passenger safety. This technology can be implements in Malaysia but in order to do it some changing had to be made first to ensure the effectiveness of the technology. V2V communication should have a Doppler sensor as a device sensor that can integrates with cruise control to form adaptive cruise control. Other than that, it also need WAVE to assure a reliable communication system between vehicles. The GPS system is needs to determine exact location of car that can be use in roadways environment such as overtaking situatio

    Design and Evaluation of a Traffic Safety System based on Vehicular Networks for the Next Generation of Intelligent Vehicles

    Get PDF
    La integración de las tecnologías de las telecomunicaciones en el sector del automóvil permitirá a los vehículos intercambiar información mediante Redes Vehiculares, ofreciendo numerosas posibilidades. Esta tesis se centra en la mejora de la seguridad vial y la reducción de la siniestralidad mediante Sistemas Inteligentes de Transporte (ITS). El primer paso consiste en obtener una difusión eficiente de los mensajes de advertencia sobre situaciones potencialmente peligrosas. Hemos desarrollado un marco para simular el intercambio de mensajes entre vehículos, utilizado para proponer esquemas eficientes de difusión. También demostramos que la disposición de las calles tiene gran influencia sobre la eficiencia del proceso. Nuestros algoritmos de difusión son parte de una arquitectura más amplia (e-NOTIFY) capaz de detectar accidentes de tráfico e informar a los servicios de emergencia. El desarrollo y evaluación de un prototipo demostró la viabilidad del sistema y cómo podría ayudar a reducir el número de víctimas en carretera

    Antenna Selection And MIMO Capacity Estimation For Vehicular Communication Systems

    Get PDF
    Vehicular communication is one of the promising prospects of wireless communication capable of addressing the issues related to road safety, providing the framework for smart or intelligent cars. To provide a reliable wireless link for vehicular communication extensive channel modeling and measurements are required. In this thesis a novel cost-effective implementation of vehicular channel capacity measuring system using off-the-shelf devices is proposed. Then using the proposed system, various channel measurements are performed. The measurement results are utilized to examine multi-antenna systems for vehicular communication. The challenge in developing an efficient network between cars is to understand the nature of random channels that changes with the location of antenna, surroundings and obstacles between the transmitting and receiving vehicles. In addition to measurements, in this thesis, the channel behavior has been studied through simulation. Wireless InSite from Remcom was used as a simulation tool to study different vehicular channels in environments with different structures to see the impact of obstacles and surroundings in the performance of the vehicular network. In particular, the behavior of different antenna locations on channel capacity of 2Ã2 Multiple Input Multiple Output (MIMO) systems is investigated. Channel capacities that are obtained from simulation and measurements provide the information about the changing nature of the channel and outline the essential considerations while choosing the antenna positions on the transmitting or receiving vehicles

    Safe Intelligent Driver Assistance System in V2X Communication Environments based on IoT

    Get PDF
    In the modern world, power and speed of cars have increased steadily, as traffic continued to increase. At the same time highway-related fatalities and injuries due to road incidents are constantly growing and safety problems come first. Therefore, the development of Driver Assistance Systems (DAS) has become a major issue. Numerous innovations, systems and technologies have been developed in order to improve road transportation and safety. Modern computer vision algorithms enable cars to understand the road environment with low miss rates. A number of Intelligent Transportation Systems (ITSs), Vehicle Ad-Hoc Networks (VANETs) have been applied in the different cities over the world. Recently, a new global paradigm, known as the Internet of Things (IoT) brings new idea to update the existing solutions. Vehicle-to-Infrastructure communication based on IoT technologies would be a next step in intelligent transportation for the future Internet-of-Vehicles (IoV). The overall purpose of this research was to come up with a scalable IoT solution for driver assistance, which allows to combine safety relevant information for a driver from different types of in-vehicle sensors, in-vehicle DAS, vehicle networks and driver`s gadgets. This study brushed up on the evolution and state-of-the-art of Vehicle Systems. Existing ITSs, VANETs and DASs were evaluated in the research. The study proposed a design approach for the future development of transport systems applying IoT paradigm to the transport safety applications in order to enable driver assistance become part of Internet of Vehicles (IoV). The research proposed the architecture of the Safe Intelligent DAS (SiDAS) based on IoT V2X communications in order to combine different types of data from different available devices and vehicle systems. The research proposed IoT ARM structure for SiDAS, data flow diagrams, protocols. The study proposes several IoT system structures for the vehicle-pedestrian and vehicle-vehicle collision prediction as case studies for the flexible SiDAS framework architecture. The research has demonstrated the significant increase in driver situation awareness by using IoT SiDAS, especially in NLOS conditions. Moreover, the time analysis, taking into account IoT, Cloud, LTE and DSRS latency, has been provided for different collision scenarios, in order to evaluate the overall system latency and ensure applicability for real-time driver emergency notification. Experimental results demonstrate that the proposed SiDAS improves traffic safety

    A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles

    Get PDF
    The goal of an intelligent transportation system is to increase safety, convenience and efficiency in driving. Besides these obvious advantages, the integration of intelligent features and autonomous functionalities on vehicles will lead to major economic benefits from reduced fuel consumption to efficient exploitation of the road network. While giving this information to the driver can be useful, there is also the possibility of overloading the driver with too much information. Existing vehicles already have some mechanisms to take certain actions if the driver fails to act. Future vehicles will need more complex decision making modules which receive the raw data from all available sources, process this data and inform the driver about the existing or impending situations and suggest, or even take actions. Intelligent vehicles can take advantage of using different sources of data to provide more reliable and more accurate information about driving situations and build a safer driving environment. I have identified five general sources of data which is available for intelligent vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and other vehicles, communications between vehicles and roadside units and the driver information. But facing this huge amount of data requires a decision making module to collect this data and provide the best reaction based on the situation. In this thesis, I present a data fusion approach for decision making in vehicles in which a decision making module collects data from the available sources of information and analyses this data and provides the driver with helpful information such as traffic congestion, emergency messages, etc. The proposed approach uses agents to collect the data and the agents cooperate using a black board method to provide the necessary data for the decision making system. The Decision making system benefits from this data and provides the intelligent vehicle applications with the best action(s) to be taken. Overall, the results show that using this data fusion approach for making decision in vehicles shows great potential for improving performance of vehicular systems by reducing travel time and wait time and providing more accurate information about the surrounding environment for vehicles. In addition, the safety of vehicles will increase since the vehicles will be informed about the hazard situations

    Etude et réalisation d'un système de communications par lumière visible (VLC/LiFi). Application au domaine automobile.

    Get PDF
    The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.La problématique scientifique de cette thèse est centrée sur le développement decommunications par lumière visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les véhicules, ou entreles véhicules et l’infrastructure routière, la sécurité et l'efficacité du transport peuvent êtreconsidérablement améliorées. Compte tenu des nombreux avantages de la technologie VLC,cette solution se présente comme une excellente alternative ou un complément pour lescommunications actuelles plutôt basées sur les technologies radio-fréquences traditionnelles.Pour réaliser ces travaux de recherche, un système VLC à faible coût pour applicationautomobile a été développé. Le système proposé vise à assurer une communication très robusteentre un émetteur VLC à base de LED et un récepteur VLC monté sur un véhicule. Pour l'étudedes communications véhicule à véhicule (V2V), l'émetteur a été développé sur la base d’un pharearrière rouge de voiture, tandis que pour l'étude des communications de l'infrastructure auvéhicule (I2V), l'émetteur a été développé sur la base d'un feu de circulation. Considérant lerécepteur VLC, le problème principal réside autour d’un capteur approprié, en mesured'améliorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces différents points sont abordés dans la thèse, d’un point de vue simulationmais également réalisation du prototype.La validation expérimentale du système VLC a été réalisée dans différentes conditions etscénarii. Les résultats démontrent que la VLC peut être une technologie viable pour lesapplications envisagées
    corecore