36,033 research outputs found

    MeshPipe: a Python-based tool for easy automation and demonstration of geometry processing pipelines

    Get PDF
    The popularization of inexpensive 3D scanning, 3D printing, 3D publishing and AR/VR display technologies have renewed the interest in open-source tools providing the geometry processing algorithms required to clean, repair, enrich, optimize and modify point-based and polygonal-based models. Nowadays, there is a large variety of such open-source tools whose user community includes 3D experts but also 3D enthusiasts and professionals from other disciplines. In this paper we present a Python-based tool that addresses two major caveats of current solutions: the lack of easy-to-use methods for the creation of custom geometry processing pipelines (automation), and the lack of a suitable visual interface for quickly testing, comparing and sharing different pipelines, supporting rapid iterations and providing dynamic feedback to the user (demonstration). From the user's point of view, the tool is a 3D viewer with an integrated Python console from which internal or external Python code can be executed. We provide an easy-to-use but powerful API for element selection and geometry processing. Key algorithms are provided by a high-level C library exposed to the viewer via Python-C bindings. Unlike competing open-source alternatives, our tool has a minimal learning curve and typical pipelines can be written in a few lines of Python code.Peer ReviewedPostprint (published version

    A human computer interactions framework for biometric user identification

    Get PDF
    Computer assisted functionalities and services have saturated our world becoming such an integral part of our daily activities that we hardly notice them. In this study we are focusing on enhancements in Human-Computer Interaction (HCI) that can be achieved by natural user recognition embedded in the employed interaction models. Natural identification among humans is mostly based on biometric characteristics representing what-we-are (face, body outlook, voice, etc.) and how-we-behave (gait, gestures, posture, etc.) Following this observation, we investigate different approaches and methods for adapting existing biometric identification methods and technologies to the needs of evolving natural human computer interfaces

    A framework of web-based conceptual design

    Get PDF
    A web-based conceptual design prototype system is presented. The system consists of four parts which interpret on-line sketches as 2D and 3D geometry, extract 3D hierarchical configurations, allow editing of component behaviours, and produce VRML-based behavioural simulations for design verification and web-based application. In the first part, on-line freehand sketched input is interpreted as 2D and 3D geometry, which geometrically represents conceptual design. The system then infers 3D configuration by analysing 3D modelling history. The configuration is described by a parent–child hierarchical relationship and relative positions between two geometric components. The positioning information is computed with respect to the VRML97 specification. In order to verify the conceptual design of a product, the behaviours can be specified interactively on different components. Finally, the system creates VRML97 formatted files for behavioural simulation and collaborative design application over the Internet. The paper gives examples of web-based applications. This work forms a part of a research project into the design and establishing of modular machines for automation manufacture. A consortium of leading automotive companies is collaborating on the research project

    Building Huys Hengelo in VRML

    Get PDF
    In this paper we report about our attempts to rebuild a historical building, ‘Huys Hengelo’, its interior, a farm built next to it and other parts of its environment (including a draw-bridge and a gate) using the Virtual Reality Modeling Language (VRML). This castle building played an important role in the history of its region. The main issues we deal with in this paper are: the unreliability of available sources − forcing us to show alternatives rather than ‘the building as it was’, the possibility to allow users to make changes and to experiment with different geographies, animations showing how parts of the wooden buildings were constructed during that time, the interface with the user and, as the project started as a student project on the request of some local historians and architects, some of our experiences with the co-operation between them and computer science students and researchers

    Creating and reading realistic electronic books

    Get PDF
    A digital library project aims to combine the look and feel of physical books with the advantages of online documents such as hyperlinks and multimedia. A lightweight open source implementation enables highly responsive page turning and works within standard Web browsers

    The role of avatars in e-government interfaces

    Get PDF
    This paper investigates the use of avatars to communicate live message in e-government interfaces. A comparative study is presented that evaluates the contribution of multimodal metaphors (including avatars) to the usability of interfaces for e-government and user trust. The communication metaphors evaluated included text, earcons, recorded speech and avatars. The experimental platform used for the experiment involved two interface versions with a sample of 30 users. The results demonstrated that the use of multimodal metaphors in an e-government interface can significantly contribute to enhancing the usability and increase trust of users to the e-government interface. A set of design guidelines, for the use of multimodal metaphors in e-government interfaces, was also produced
    corecore