7,562 research outputs found

    Analysis of resource sharing in transparent networks

    Get PDF
    Transparent optical networking promises a cost-efficient solution for future core and metro networks because of the efficacy of switching high-granularity trunk traffic without opto-electronic conversion. Network availability is an important performance parameter for network operators, who are incorporating protection and restoration mechanisms in the network to achieve competitive advantages. This paper focuses on the reduction in Capital Expenditures (CapEx) expected from implementing sharing of backup resources in path-protected transparent networks. We dimension a nationwide network topology for different protection mechanisms using transparent and opaque architectures. We investigate the CapEx reductions obtained through protection sharing on a population of 1000 randomly generated biconnected planar topologies with 14 nodes. We show that the gain for transparent networks is heavily dependent on the offered load, with almost no relative gain for low load (no required parallel line systems). We also show that for opaque networks the CapEx reduction through protection sharing is independent of the traffic load and shows only a small dependency on the number of links in the network. The node CapEx reduction for high load (relative to the number of channels in a line system) is comparable to the CapEx reduction in opaque OTN systems. This is rather surprising as in OTN systems the number of transceivers and linecards and the size of the OTN switching matrix all decrease, while in transparent networks only the degree of the ROADM (number and size of WSSs in the node) decreases while the number of transponders remains the same

    GMPLS-Controlled Dynamic Translucent Optical Networks

    Get PDF
    The evolution of optical technologies has paved the way to the migration from opaque optical networks (i.e., networks in which the optical signal is electronically regenerated at each node) to transparent (i.e., all-optical) networks. Translucent optical networks (i.e., optical networks with sparse opto-electronic regeneration) enable the exploitation of the benefits of both opaque and transparent networks while providing a suitable solution for dynamic connections. Translucent optical networks with dynamic connections can be controlled by the GMPLS protocol suite. This article discusses the enhancements that the GMPLS suite requires for the control of dynamic translucent optical networks with quality of transmission guarantees. Such enhancements concern QoT-awareness and regenerator-awareness and can be achieved by collecting and disseminating the information on QoT and regenerator availability, respectively, and by efficiently leveraging such information for traffic engineering purposes. More specifically, the article proposes two distributed approaches, based on the routing protocol and the signaling protocol, for disseminating regenerator information in the GMPLS control plane. Moreover, three strategies are introduced to efficiently and dynamically designate the regeneration node(s) along the connection route. Routing and signaling approaches are compared in terms of blocking probability, setup time, and control plane load during provisioning and restoration

    Performance improvement of an optical network providing services based on multicast

    Full text link
    Operators of networks covering large areas are confronted with demands from some of their customers who are virtual service providers. These providers may call for the connectivity service which fulfils the specificity of their services, for instance a multicast transition with allocated bandwidth. On the other hand, network operators want to make profit by trading the connectivity service of requested quality to their customers and to limit their infrastructure investments (or do not invest anything at all). We focus on circuit switching optical networks and work on repetitive multicast demands whose source and destinations are {\em \`a priori} known by an operator. He may therefore have corresponding trees "ready to be allocated" and adapt his network infrastructure according to these recurrent transmissions. This adjustment consists in setting available branching routers in the selected nodes of a predefined tree. The branching nodes are opto-electronic nodes which are able to duplicate data and retransmit it in several directions. These nodes are, however, more expensive and more energy consuming than transparent ones. In this paper we are interested in the choice of nodes of a multicast tree where the limited number of branching routers should be located in order to minimize the amount of required bandwidth. After formally stating the problem we solve it by proposing a polynomial algorithm whose optimality we prove. We perform exhaustive computations to show an operator gain obtained by using our algorithm. These computations are made for different methods of the multicast tree construction. We conclude by giving dimensioning guidelines and outline our further work.Comment: 16 pages, 13 figures, extended version from Conference ISCIS 201

    An analysis of Regenerator Placement strategies for a Translucent OBS network architecture

    Get PDF
    Most research works in optical burst switching (OBS) networks do not take into account the impact of physical layer impairments (PLIs) either by considering fully transparent (i.e., using optical 3R regeneration) or opaque (i.e., electrical 3R regeneration) networks. However, both solutions are not feasible for different reasons. In this paper, we propose a novel translucent OBS (T-OBS) network architecture which aims at bridging the gap between the transparent and opaque solutions. In order to evaluate its performance, a formulation of the routing and regenerator placement and dimensioning problem (RRPD) is presented. Since such formulation results in a complex problem, we also propose several alternative heuristic strategies. In particular, we evaluate the trade-off between optimality and execution times provided by these methods. Finally, we conduct a series of simulation experiments that prove that the T-OBS network model proposed effectively deals with burst losses caused by the impact of PLIs and ensures that the overall network performance remains unaffected.Preprin

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Next-generation optical access seamless Evolution: concluding results of the European FP7 project OASE

    Get PDF
    Increasing bandwidth demand drives the need for next-generation optical access (NGOA) networks that can meet future end-user service requirements. This paper gives an overview of NGOA solutions, the enabling optical access network technologies, architecture principles, and related economics and business models. NGOA requirements (including peak and sustainable data rate, reach, cost, node consolidation, and open access) are proposed, and the different solutions are compared against such requirements in different scenarios (in terms of population density and system migration). Unsurprisingly, it is found that different solutions are best suited for different scenarios. The conclusions drawn from such findings allow us to formulate recommendations in terms of technology, strategy, and policy. The paper is based on the main results of the European FP7 OASE Integrated Project that ran between January 1, 2010 and February 28, 2013
    • …
    corecore