12 research outputs found

    Searching for the physical nature of intelligence in Neuromorphic Nanowire Networks

    Get PDF
    The brain’s unique information processing efficiency has inspired the development of neuromorphic, or brain-inspired, hardware in effort to reduce the power consumption of conventional Artificial Intelligence (AI). One example of a neuromorphic system is nanowire networks (NWNs). NWNs have been shown to produce conductance pathways similar to neuro-synaptic pathways in the brain, demonstrating nonlinear dynamics, as well as emergent behaviours such as memory and learning. Their synapse-like electro-chemical junctions are connected by a heterogenous neural network-like structure. This makes NWNs a unique system for realising hardware-based machine intelligence that is potentially more brain-like than existing implementations of AI. Much of the brain’s emergent properties are thought to arise from a unique structure-function relationship. The first part of the thesis establishes structural network characterisation methods in NWNs. Borrowing techniques from neuroscience, a toolkit is introduced for characterising network topology in NWNs. NWNs are found to display a ‘small-world’ structure with highly modular connections, like simple biological systems. Next, investigation of the structure-function link in NWNs occurs via implementation of machine learning benchmark tasks on varying network structures. Highly modular networks exhibit an ability to multitask, while integrated networks suffer from crosstalk interference. Finally, above findings are combined to develop and implement neuroscience-inspired learning methods and tasks in NWNs. Specifically, an adaptation of a cognitive task that tests working memory in humans is implemented. Working memory and memory consolidation are demonstrated and found to be attributable to a process similar to synaptic metaplasticity in the brain. The results of this thesis have created new research directions that warrant further exploration to test the universality of the physical nature of intelligence in inorganic systems beyond NWNs

    Research on Brain and Mind Inspired Intelligence

    Get PDF
    To address the problems of scientific theory, common technology and engineering application of multimedia and multimodal information computing, this paper is focused on the theoretical model, algorithm framework, and system architecture of brain and mind inspired intelligence (BMI) based on the structure mechanism simulation of the nervous system, the function architecture emulation of the cognitive system and the complex behavior imitation of the natural system. Based on information theory, system theory, cybernetics and bionics, we define related concept and hypothesis of brain and mind inspired computing (BMC) and design a model and framework for frontier BMI theory. Research shows that BMC can effectively improve the performance of semantic processing of multimedia and cross-modal information, such as target detection, classification and recognition. Based on the brain mechanism and mind architecture, a semantic-oriented multimedia neural, cognitive computing model is designed for multimedia semantic computing. Then a hierarchical cross-modal cognitive neural computing framework is proposed for cross-modal information processing. Furthermore, a cross-modal neural, cognitive computing architecture is presented for remote sensing intelligent information extraction platform and unmanned autonomous system

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    De animais a máquinas : humanos tecnicamente melhores nos imaginários de futuro da convergência tecnológica

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Sociais, Departamento de Sociologia, 2020.O tema desta investigação é discutir os imaginários sociais de ciência e tecnologia que emergem a partir da área da neuroengenharia, em sua relação com a Convergência Tecnológica de quatro disciplinas: Nanotecnologia, Biotecnologia, tecnologias da Informação e tecnologias Cognitivas - neurociências- (CT-NBIC). Estas áreas desenvolvem-se e são articuladas por meio de discursos que ressaltam o aprimoramento das capacidades físicas e cognitivas dos seres humanos, com o intuito de construir uma sociedade melhor por meio do progresso científico e tecnológico, nos limites das agendas de pesquisa e desenvolvimento (P&D). Objetivos: Os objetivos nesse cenário, são discutir as implicações éticas, econômicas, políticas e sociais deste modelo de sistema sociotécnico. Nos referimos, tanto as aplicações tecnológicas, quanto as consequências das mesmas na formação dos imaginários sociais, que tipo de relações se estabelecem e como são criadas dentro desse contexto. Conclusão: Concluímos na busca por refletir criticamente sobre as propostas de aprimoramento humano mediado pela tecnologia, que surgem enquanto parte da agenda da Convergência Tecnológica NBIC. No entanto, as propostas de melhoramento humano vão muito além de uma agenda de investigação. Há todo um quadro de referências filosóficas e políticas que defendem o aprimoramento da espécie, vertentes estas que se aliam a movimentos trans-humanistas e pós- humanistas, posições que são ao mesmo tempo éticas, políticas e econômicas. A partir de nossa análise, entendemos que ciência, tecnologia e política estão articuladas, em coprodução, em relação às expectativas de futuros que são esperados ou desejados. Ainda assim, acreditamos que há um espaço de diálogo possível, a partir do qual buscamos abrir propostas para o debate público sobre questões de ciência e tecnologia relacionadas ao aprimoramento da espécie humana.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The subject of this research is to discuss the social imaginaries of science and technology that emerge from the area of neuroengineering in relation with the Technological Convergence of four disciplines: Nanotechnology, Biotechnology, Information technologies and Cognitive technologies -neurosciences- (CT-NBIC). These areas are developed and articulated through discourses that emphasize the enhancement of human physical and cognitive capacities, the intuition it is to build a better society, through the scientific and technological progress, at the limits of the research and development (R&D) agendas. Objectives: The objective in this scenery, is to discuss the ethic, economic, politic and social implications of this model of sociotechnical system. We refer about the technological applications and the consequences of them in the formation of social imaginaries as well as the kind of social relations that are created and established in this context. Conclusion: We conclude looking for critical reflections about the proposals of human enhancement mediated by the technology. That appear as a part of the NBIC technologies agenda. Even so, the proposals of human enhancement go beyond boundaries that an investigation agenda. There is a frame of philosophical and political references that defend the enhancement of the human beings. These currents that ally to the transhumanism and posthumanism movements, positions that are ethic, politic and economic at the same time. From our analysis, we understand that science, technology and politics are articulated, are in co-production, regarding the expected and desired futures. Even so, we believe that there is a space of possible dialog, from which we look to open proposals for the public discussion on questions of science and technology related to enhancement of human beings

    An Initial Framework Assessing the Safety of Complex Systems

    Get PDF
    Trabajo presentado en la Conference on Complex Systems, celebrada online del 7 al 11 de diciembre de 2020.Atmospheric blocking events, that is large-scale nearly stationary atmospheric pressure patterns, are often associated with extreme weather in the mid-latitudes, such as heat waves and cold spells which have significant consequences on ecosystems, human health and economy. The high impact of blocking events has motivated numerous studies. However, there is not yet a comprehensive theory explaining their onset, maintenance and decay and their numerical prediction remains a challenge. In recent years, a number of studies have successfully employed complex network descriptions of fluid transport to characterize dynamical patterns in geophysical flows. The aim of the current work is to investigate the potential of so called Lagrangian flow networks for the detection and perhaps forecasting of atmospheric blocking events. The network is constructed by associating nodes to regions of the atmosphere and establishing links based on the flux of material between these nodes during a given time interval. One can then use effective tools and metrics developed in the context of graph theory to explore the atmospheric flow properties. In particular, Ser-Giacomi et al. [1] showed how optimal paths in a Lagrangian flow network highlight distinctive circulation patterns associated with atmospheric blocking events. We extend these results by studying the behavior of selected network measures (such as degree, entropy and harmonic closeness centrality)at the onset of and during blocking situations, demonstrating their ability to trace the spatio-temporal characteristics of these events.This research was conducted as part of the CAFE (Climate Advanced Forecasting of sub-seasonal Extremes) Innovative Training Network which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844

    Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II

    Get PDF
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic number; inclusion relation; Q-linguistic neutrosophic variable set; vector similarity measure; fundamental neutro-homomorphism theorem; neutro-isomorphism theorem; quasi neutrosophic triplet loop; quasi neutrosophic triplet group; BE-algebra; cloud model; fuzzy measure; clustering algorithm; and many more

    Collected Papers (on Neutrosophic Theory and Applications), Volume VI

    Get PDF
    This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas
    corecore