6,797 research outputs found

    Navigation System for Foreign Tourists in Japan

    Get PDF
    The present study aimed to design, develop, operate and evaluate a sightseeing navigation system in order to support foreign tourists’ efficient acquisition of sightseeing spot information in Japanese urban tourist areas, about which a variety of information is transmitted, by enabling information to be accumulated, shared and recommended. The system was developed by integrating Web-GIS (Geographic Information Systems), SNS (Social Networking Services) as well as the recommendation system into a single system. The system used the non-language information such as signs, marks and pictograms in addition to English information, and displayed sightseeing spot information and conduct navigation on 2D and 3D digital maps of the Web-GIS. Additionally, the system was operated for two weeks in the central part of Yokohama city in Kanagawa Prefecture, Japan, and the total number of users was 54. Based on the results of the web questionnaire survey, all of the specific functions are highly evaluated, and the usefulness of the system when sightseeing was excellent. From the results of the access analysis of users’ log data, it is evident that it can be said that the system was mainly used before sightseeing and users confirm their favorite sightseeing spots and made their tour planning in advance, using 2D and 3D digital maps

    The Mobile Generation: Global Transformations at the Cellular Level

    Get PDF
    Every year we see a new dimension of the ongoing Digital Revolution, which is enabling an abundance of information to move faster, cheaper, in more intelligible forms, in more directions, and across borders of every kind. The exciting new dimension on which the Aspen Institute focused its 2006 Roundtable on Information Technology was mobility, which is making the Digital Revolution ubiquitous. As of this writing, there are over two billion wireless subscribers worldwide and that number is growing rapidly. People are constantly innovating in the use of mobile technologies to allow them to be more interconnected. Almost a half century ago, Ralph Lee Smith conjured up "The Wired Nation," foretelling a world of interactive communication to and from the home that seems commonplace in developed countries today. Now we have a "Wireless World" of communications potentially connecting two billion people to each other with interactive personal communications devices. Widespead adoption of wireless handsets, the increasing use of wireless internet, and the new, on-the-go content that characterizes the new generation of users are changing behaviors in social, political and economic spheres. The devices are easy to use, pervasive and personal. The affordable cell phone has the potential to break down the barriers of poverty and accessibility previously posed by other communications devices. An entire generation that is dependant on ubiquitous mobile technologies is changing the way it works, plays and thinks. Businesses, governments, educational institutions, religious and other organizations in turn are adapting to reach out to this mobile generation via wireless technologies -- from SMS-enabled vending machines in Finland to tech-savvy priests in India willing to conduct prayers transmitted via cell phones. Cellular devices are providing developing economies with opportunities unlike any others previously available. By opening the lines of communication, previously disenfranchised groups can have access to information relating to markets, economic opportunities, jobs, and weather to name just a few. When poor village farmers from Bangladesh can auction their crops on a craigslist-type service over the mobile phone, or government officials gain instantaneous information on contagious diseases via text message, the miracles of mobile connectivity move us from luxury to necessity. And we are only in the early stages of what the mobile electronic communications will mean for mankind. We are now "The Mobile Generation." Aspen Institute Roundtable on Information Technology. To explore the implications of these phenomena, the Aspen Institute Communications and Society Program convened 27 leaders from business, academia, government and the non-profit sector to engage in three days of dialogue on related topics. Some are experts in information and communications technologies, others are leaders in the broader society affected by these innovations. Together, they examined the profound changes ahead as a result of the convergence of wireless technologies and the Internet. In the following report of the Roundtable meeting held August 1-4, 2006, J. D. Lasica, author of Darknet and co-founder of Ourmedia.org, deftly sets up, contextualizes, and captures the dialogue on the impact of the new mobility on economic models for businesses and governments, social services, economic development, and personal identity

    A two-step approach for interest estimation from gaze behavior in digital catalog browsing

    Get PDF
    While eye gaze data contain promising clues for inferring the interests of viewers of digital catalog content, viewers often dynamically switch their focus of attention. As a result, a direct application of conventional behavior analysis techniques, such as topic models, tends to be affected by items or attributes of little or no interest to the viewer. To overcome this limitation, we need to identify “when” the user compares items and to detect “which attribute types/values” reflect the user’s interest. This paper proposes a novel two-step approach to addressing these needs. Specifically, we introduce a likelihood-based short-term analysis method as the first step of the approach to simultaneously determine comparison phases of browsing and detect the attributes on which the viewer focuses, even when the attributes cannot be directly obtained from gaze points. Using probabilistic latent semantic analysis, we show that this short-term analysis step greatly improves the results of the subsequent step. The effectiveness of the framework is demonstrated in terms of the capability to extract combinations of attributes relevant to the viewer’s interest, which we call aspects, and also to estimate the interest described by these aspects

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Virtualization system for life science automation laboratory

    Get PDF
    The dissertation developed a Virtualization System to simulate experiment workflows in Life Science Automation (LSA) virtually. The system integrates technologies of process control technology, TCP/IP socket, database, Visual C#, Python Script, Visual Component 3DCreate and 3D modeling, etc. It mainly has four modules: Process Control System, Data Transfer System, Control System and Virtualization Module. The system supplies a vivid and flexible 4D virtualization on LSA experiment workflows for customers, and makes demonstrations for LSA laboratories more conveniently

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Sensorimotor content of multi-unit activity in the paramedian lobule of the cerebellum

    Get PDF
    Based on Center for Disease Control and Prevention report 2016, around 39.5 million people in the United States suffer from motor disabilities. These disabilities are due to traumatic conditions like traumatic brain injury (TBI), neurological diseases such as amyotrophic lateral sclerosis (ALS), or congenital conditions. One of the approaches for restoring the lost motor function is to extract the volitional information from the central nervous system (CNS) and control a mechanical device that can replace the function of a paralyzed limb through systems called Brain-Computer Interfaces (BCI). One of the major challenges being faced in BCIs and also in general neural recording field is the limitations of the microelectrodes. In this study, as the first aim, a custom-made micro-electrode array (MEA) using carbon fibers is developed. After ex vivo testing, they are implanted into the paramedian lobule (PML) of the rat cerebellum to record the multi-unit activity from its cortex. Following animal termination, tissue samples are examined with histological techniques for the assessment of tissue damage caused by the electrodes. Another challenge in the BCI field is extracting the control information regarding the intended motor function from the CNS. The way the cerebellar cortex encodes sensorimotor information and contributes to motor coordination has been a topic of discussion for decades. Recent studies have revealed high correlations between Purkinje cell simple spikes and the forelimb kinematics in experimental animals. However, tracking single spike activity in long-term implants with multi-channel electrodes has well-known challenges. Therefore, as the second aim of this study, the correlation of multi-unit neural signals from the paramedian lobule (PML) of the cerebellar cortex to the forelimb muscle activities (EMG) in rats during behavior was investigated. Linear regression is performed to predict the EMG signal envelopes using the cerebellar activity for various time shifts of the data (±10, ±50, ±100, and ±200 ms) to determine if the neural signals are primarily motor or sensory. The highest correlations (~0.6 on average) between neural and EMG envelopes are observed when the EMG signals are either shifted only about ±10 ms or not shifted at all with respect to the neural signals. There were however still correlations above the chance level for larger shifts in time. The results suggest that PML cortex contains both motor and sensory information in relation to the forelimb activity, and also that the extraction of motor information is feasible from multi-unit neural recordings from the cerebellar cortex. Increased prediction success was observed in reaching and retrieval phases compared to grasping phase when predictions were tested on three phases of the behavior separately. When EMG and neural signal envelopes were clustered, they showed patterns of surges of activity in all three phases. The neural signals showed higher activity in the reaching phase. The 300-1000Hz components of neural signals contributed to the predictions more than the other frequency bands. The results of this study supports the feasibility of a BCI based on MUA extracted from the cerebellar cortex using MEAs

    Virtual reality exposure therapy as treatment for pain catastrophizing in fibromyalgia patients: proof-of-concept study (Study Protocol)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Albeit exercise is currently advocated as one of the most effective management strategies for fibromyalgia syndrome (FMS); the implementation of exercise as a FMS treatment in reality is significantly hampered by patients' poor compliance. The inference that pain catastrophizing is a key predictor of poor compliance in FMS patients, justifies considering the alteration of pain catastrophizing in improving compliance towards exercises in FMS patients. The aim of this study is to provide proof-of-concept for the development and testing of a novel virtual reality exposure therapy (VRET) program as treatment for exercise-related pain catastrophizing in FMS patients.</p> <p>Methods</p> <p>Two interlinked experimental studies will be conducted. Study 1 aims to objectively ascertain if neurophysiological changes occur in the functional brain areas associated with pain catastrophizing, when catastrophizing FMS subjects are exposed to visuals of exercise activities. Study 2 aims to ascertain the preliminary efficacy and feasibility of exposure to visuals of exercise activities as a treatment for exercise-related pain catastrophizing in FMS subjects. Twenty subjects will be selected from a group of FMS patients attending the Tygerberg Hospital in Cape Town, South Africa and randomly allocated to either the <b>VRET </b>(intervention) group or <b>waiting list </b>(control) group. Baseline neurophysiological activity for subjects will be collected in study 1 using functional magnetic resonance imaging (fMRI). In study 2, clinical improvement in pain catastrophizing will be measured using fMRI (objective) and the pain catastrophizing scale (subjective).</p> <p>Discussion</p> <p>The premise is if exposing FMS patients to visuals of various exercise activities trigger the functional brain areas associated with pain catastrophizing; then as a treatment, repeated exposure to visuals of the exercise activities using a VRET program could possibly decrease exercise-related pain catastrophizing in FMS patients. Proof-of-concept will either be established or negated. The results of this project are envisaged to revolutionize FMS and pain catastrophizing research and in the future, assist health professionals and FMS patients in reducing despondency regarding FMS management.</p> <p>Trial registration</p> <p>PACTR201011000264179</p
    corecore