169 research outputs found

    An exploration of IoT platform development

    Get PDF
    IoT (Internet of Things) platforms are key enablers for smart city initiatives, targeting the improvement of citizens\u27 quality of life and economic growth. As IoT platforms are dynamic, proactive, and heterogeneous socio-technical artefacts, systematic approaches are required for their development. Limited surveys have exclusively explored how IoT platforms are developed and maintained from the perspective of information system development process lifecycle. In this paper, we present a detailed analysis of 63 approaches. This is accomplished by proposing an evaluation framework as a cornerstone to highlight the characteristics, strengths, and weaknesses of these approaches. The survey results not only provide insights of empirical findings, recommendations, and mechanisms for the development of quality aware IoT platforms, but also identify important issues and gaps that need to be addressed

    Improving the Reliability of Optimised Link State Routing Protocol in Smart Grid’s Neighbour Area Network

    Get PDF
    A reliable and resilient communication infrastructure that can cope with variable application traffic types and delay objectives is one of the prerequisites that differentiates a Smart Grid from the conventional electrical grid. However, the legacy communication infrastructure in the existing electrical grid is insufficient, if not incapable of satisfying the diverse communication requirements of the Smart Grid. The IEEE 802.11 ad hoc Wireless Mesh Network (WMN) is re-emerging as one of the communication networks that can significantly extend the reach of Smart Grid to backend devices through the Advanced Metering Infrastructure (AMI). However, the unique characteristics of AMI application traffic in the Smart Grid poses some interesting challenges to conventional communication networks including the ad hoc WMN. Hence, there is a need to modify the conventional ad hoc WMN, to address the uncertainties that may exist in its applicability in a Smart Grid environment. This research carries out an in-depth study of the communication of Smart Grid application traffic types over ad hoc WMN deployed in the Neighbour Area Network (NAN). It begins by conducting a critical review of the application characteristics and traffic requirements of several Smart Grid applications and highlighting some key challenges. Based on the reviews, and assuming that the application traffic types use the internet protocol (IP) as a transport protocol, a number of Smart Grid application traffic profiles were developed. Through experimental and simulation studies, a performance evaluation of an ad hoc WMN using the Optimised Link State Routing (OLSR) routing protocol was carried out. This highlighted some capacity and reliability issues that routing AMI application traffic may face within a conventional ad hoc WMN in a Smart Grid NAN. Given the fact that conventional routing solutions do not consider the traffic requirements when making routing decisions, another key observation is the inability of link metrics in routing protocols to select good quality links across multiple hops to a destination and also provide Quality of Service (QoS) support for target application traffic. As with most routing protocols, OLSR protocol uses a single routing metric acquired at the network layer, which may not be able to accommodate different QoS requirements for application traffic in Smart Grid. To address these problems, a novel multiple link metrics approach to improve the reliability performance of routing in ad hoc WMN when deployed for Smart Grid is presented. It is based on the OLSR protocol and explores the possibility of applying QoS routing for application traffic types in NAN based ad hoc WMN. Though routing in multiple metrics has been identified as a complex problem, Multi-Criteria Decision Making (MCDM) techniques such as the Analytical Hierarchy Process (AHP) and pruning have been used to perform such routing on wired and wireless multimedia applications. The proposed multiple metrics OLSR with AHP is used to offer the best available route, based on a number of considered metric parameters. To accommodate the variable application traffic requirements, a study that allows application traffic to use the most appropriate routing metric is presented. The multiple metrics development is then evaluated in Network Simulator 2.34; the simulation results demonstrate that it outperforms existing routing methods that are based on single metrics in OLSR. It also shows that it can be used to improve the reliability of application traffic types, thereby overcoming some weaknesses of existing single metric routing across multiple hops in NAN. The IEEE 802.11g was used to compare and analyse the performance of OLSR and the IEEE 802.11b was used to implement the multiple metrics framework which demonstrate a better performance than the single metric. However, the multiple metrics can also be applied for routing on different IEEE wireless standards, as well as other communication technologies such as Power Line Communication (PLC) when deployed in Smart Grid NAN

    Réseaux de capteurs ubiquitous dans l'environnement NGN

    Get PDF
    Ubiquités Sensor Network (USN) is a conceptual network built over existing physical networks. It makes use of sensed data and provides knowledge services to anyone, anywhere and at anytime, and where the information is generated by using context awareness. Smart wearable devices and USNs are emerging rapidly providing many reliable services facilitating people life. Those very useful small end terminals and devices require a global communication substrate to provide a comprehensive global end user service. In 2010, the ITU-T provided the requirements to support USN applications and services in the Next Génération Network (NGN) environment to exploit the advantages of the core network. One of the main promising markets for the USN application and services is the e-Health. It provides continuous patients’ monitoring and enables a great improvement in medical services. On the other hand, Vehicular Ad-Hoc NETwork (VANET) is an emerging technology, which provides intelligent communication between mobile vehicles. Integrating VANET with USN has a great potential to improve road safety and traffic efficiency. Most VANET applications are applied in real time and they are sensitive to delay, especially those related to safety and health. In this work, we propose to use IP Multimedia Subsystem (IMS) as a service controller sub-layer in the USN environment providing a global substrate for a comprehensive end-to-end service. Moreover, we propose to integrate VANETs with USN for more rich applications and facilities, which will ease the life of humans. We started studying the challenges on the road to achieve this goalUbiquitous Sensor Network (USN) est un réseau conceptuel construit sur des réseaux physiques existantes. Il se sert des données détectées et fournit des services de connaissances à quiconque, n'importe où et à tout moment, et où l'information est générée en utilisant la sensibilité au contexte. Dispositifs et USN portables intelligents émergent rapidement en offrant de nombreux services fiables facilitant la vie des gens. Ces petits terminaux et terminaux très utiles besoin d'un substrat de communication globale pour fournir un service complet de l'utilisateur final global. En 2010, ITU -T a fourni les exigences pour supporter des applications et services USN dans le Next Generation Network (NGN) de l'environnement d'exploiter les avantages du réseau de base. L'un des principaux marchés prometteurs pour l'application et les services USN est la e- santé. Il fournit le suivi des patients en continu et permet une grande amélioration dans les services médicaux. D'autre part, des Véhicules Ad-hoc NETwork (VANET) est une technologie émergente qui permet une communication intelligente entre les véhicules mobiles. Intégrer VANET avec USN a un grand potentiel pour améliorer la sécurité routière et la fluidité du trafic. La plupart des applications VANET sont appliqués en temps réel et ils sont sensibles à retarder, en particulier ceux liés à la sécurité et à la santé. Dans ce travail, nous proposons d'utiliser l'IP Multimédia Subsystem (IMS) comme une sous- couche de contrôle de service dans l'environnement USN fournir un substrat mondiale pour un service complet de bout en bout. De plus, nous vous proposons d'intégrer VANETs avec USN pour des applications et des installations riches plus, ce qui facilitera la vie des humains. Nous avons commencé à étudier les défis sur la route pour atteindre cet objecti

    A Conceptual Framework for Analysis of System Safety Interoperability of United States Navy\u27s Combat Systems

    Get PDF
    Today\u27s political and military reality requires the optimal use of our legacy systems. The objective is to maximize the effectiveness of our operations by efficient allocation, placement and the use of our forces and war-fighting systems. The synergism drawn from the capabilities of the legacy complex systems enables today\u27s war-fighting needs to be met without substantial increase in cost or resources. This synergism can be realized by the effective integration and interoperation of legacy systems into a larger, more complex system of systems. However, the independently developed legacy systems in this new tactical environment often have different data types, languages, data modeling, operating systems, etc. These differences are impediments to the requirement for interoperability, and can create an environment of confusion, misinformation and certainly un-interoperability, hence hinder the safe interoperation of the metasystem and potentially increase the risk for mishaps. Safe interoperability capability assures that the mission objectives are achieved not only effectively but also safely. The System Safety Interoperability Framework (SSIF) introduced in this dissertation provides the framework for the engineering community to evaluate, from system safety perspective, the interoperability issues between multiple complex systems in the U.S. Navy\u27s system of systems context. SSIF characterization attributes are System of Systems (SoS) tactical environment, SoS Engineering, SoS Safety Engineering, and Safety Critical Data. SSIF is applied to AEGIS Ballistic Missile Defense 3.0 Program to explore and analyze the safety interoperability issues in the overall system, by which the SSIF is further validated as an effective approach in analyzing the safe interoperability capability in Navy\u27s combat systems

    New Challenges on Web Architectures for the Homogenization of the Heterogeneity of Smart Objects in the Internet of Things

    Get PDF
    Aquesta tesi tracta de dues de les noves tecnologies relacionades amb la Internet of Things (IoT) i la seva integració amb el camp de les Smart Grids (SGs); aquestes tecnologies son la Web of Things (WoT) i la Social Internet of Things (SIoT). La WoT és una tecnologia que s’espera que proveeixi d’un entorn escalable i interoperable a la IoT usant la infraestructura web existent, els protocols web y la web semàntica. També s’espera que la SIoT contribueixi a solucionar els reptes d’escalabilitat i capacitat de descobriment creant una xarxa social d’agents (objectes i humans). Per explorar la sinergia entre aquestes tecnologies, l’objectiu és el de proporcionar evidència pràctica i empírica, generalment en forma de prototips d’implementació i experimentació empírica. En relació amb la WoT i les SGs, s’ha creat un prototip per al Web of Energy (WoE) que té com a objectiu abordar els desafiaments presents en el domini les SGs. El prototip és capaç de proporcionar interoperabilitat i homogeneïtat entre diversos protocols. El disseny d’implementació es basa en el Model d’Actors, que també proporciona escalabilitat del prototip. L’experimentació mostra que el prototip pot gestionar la transmissió de missatges per a aplicacions de les SGs que requereixen que la comunicació es realitzi sota llindars de temps crítics. També es pren una altra direcció d’investigació similar, menys centrada en les SGs, però per a una gamma més àmplia de dominis d’aplicació. S’integra la descripció dels fluxos d’execució com a màquines d’estats finits utilitzant ontologies web (Resource Description Framework (RDF)) i metodologies de la WoT (les accions es realitzen basant-se en peticions Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Aquest flux d’execució, que també pot ser un plantilla per a permetre una configuració flexible en temps d’execució, s’implementa i interpreta com si fos (i mitjançant) un Virtual Object (VO). L’objectiu de la plantilla és ser reutilitzable i poder-se compartir entre múltiples desplegaments de la IoT dins el mateix domini d’aplicació. A causa de les tecnologies utilitzades, la solució no és adequada per a aplicacions de temps crític (llindar de temps relativament baix i rígid). No obstant això, és adequat per a aplicacions que no demanden resposta en un temps crític i que requereixen el desplegament de VOs similars en el que fa referència al flux d’execució. Finalment, el treball s’enfoca en una altra tecnologia destinada a millorar l’escalabilitat i la capacitat de descobriment en la IoT. La SIoT està sorgint com una nova estructura de la IoT que uneix els nodes a través de relacions significatives. Aquestes relacions tenen com a objectiu millorar la capacitat de descobriment; en conseqüència, millora la escalabilitat d’una xarxa de la IoT. En aquest treball s’aplica aquest nou paradigma per optimitzar la gestió de l’energia en el costat de la demanda a les SGs. L’objectiu és aprofitar les característiques de la SIoT per ajudar a la creació de Prosumer Community Groups (PCGs) (grups d’usuaris que consumeixen o produeixen energia) amb el mateix objectiu d’optimització en l’ús de l’energia. La sinergia entre la SIoT i les SGs s’ha anomenat Social Internet of Energy (SIoE). Per tant, amb la SIoE i amb el focus en un desafiament específic, s’estableix la base conceptual per a la integració entre la SIoT i les SGs. Els experiments inicials mostren resultats prometedors i aplanen el camí per a futures investigacions i avaluacions de la proposta. Es conclou que el WoT i la SIoT són dos paradigmes complementaris que nodreixen l’evolució de la propera generació de la IoT. S’espera que la propera generació de la IoT sigui un Multi-Agent System (MAS) generalitzat. Alguns investigadors ja estan apuntant a la Web i les seves tecnologies (per exemple, Web Semàntica, HTTP/S)—i més concretamente a la WoT — com a l’entorn que nodreixi a aquests agents. La SIoT pot millorar tant l’entorn com les relacions entre els agents en aquesta fusió. Les SGs també poden beneficiar-se dels avenços de la IoT, ja que es poden considerar com una aplicació específica d’aquesta última.  Esta tesis trata de dos de las novedosas tecnologías relacionadas con la Internet of Things (IoT) y su integración con el campo de las Smart Grids (SGs); estas tecnologías son laWeb of Things (WoT) y la Social Internet of Things (SIoT). La WoT es una tecnología que se espera que provea de un entorno escalable e interoperable a la IoT usando la infraestructura web existente, los protocolos web y la web semántica. También se espera que la SIoT contribuya a solucionar los retos de escalabilidad y capacidad de descubrimiento creando una red social de agentes (objetos y humanos). Para explorar la sinergia entre estas tecnologías, el objetivo es el de proporcionar evidencia práctica y empírica, generalmente en forma de prototipos de implementación y experimentación empírica. En relación con la WoT y las SGs, se ha creado un prototipo para la Web of Energy (WoE) que tiene como objetivo abordar los desafíos presentes en el dominio las SGs. El prototipo es capaz de proporcionar interoperabilidad y homogeneidad entre diversos protocolos. El diseño de implementación se basa en el Modelo de Actores, que también proporciona escalabilidad del prototipo. La experimentación muestra que el prototipo puede manejar la transmisión de mensajes para aplicaciones de las SGs que requieran que la comunicación se realice bajo umbrales de tiempo críticos. También se toma otra dirección de investigación similar, menos centrada en las SGs, pero para una gama más amplia de dominios de aplicación. Se integra la descripción de los flujos de ejecución como máquinas de estados finitos utilizando ontologías web (Resource Description Framework (RDF)) y metodologías de la WoT (las acciones se realizan basándose en peticiones Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Este flujo de ejecución, que también puede ser una plantilla para permitir una configuración flexible en tiempo de ejecución, se implementa e interpreta como si fuera (y a través de) un Virtual Object (VO). El objetivo de la plantilla es que sea reutilizable y se pueda compartir entre múltiples despliegues de la IoT dentro del mismo dominio de aplicación. Debido a las tecnologías utilizadas, la solución no es adecuada para aplicaciones de tiempo crítico (umbral de tiempo relativamente bajo y rígido). Sin embargo, es adecuado para aplicaciones que no demandan respuesta en un tiempo crítico y que requieren el despliegue de VOs similares en cuanto al flujo de ejecución. Finalmente, el trabajo se enfoca en otra tecnología destinada a mejorar la escalabilidad y la capacidad de descubrimiento en la IoT. La SIoT está emergiendo como una nueva estructura de la IoT que une los nodos a través de relaciones significativas. Estas relaciones tienen como objetivo mejorar la capacidad de descubrimiento; en consecuencia, mejora la escalabilidad de una red de la IoT. En este trabajo se aplica este nuevo paradigma para optimizar la gestión de la energía en el lado de la demanda en las SGs. El objetivo es aprovechar las características de la SIoT para ayudar en la creación de Prosumer Community Groups (PCGs) (grupos de usuarios que consumen o producen energía) con el mismo objetivo de optimización en el uso de la energía. La sinergia entre la SIoT y las SGs ha sido denominada Social Internet of Energy (SIoE). Por lo tanto, con la SIoE y con el foco en un desafío específico, se establece la base conceptual para la integración entre la SIoT y las SG. Los experimentos iniciales muestran resultados prometedores y allanan el camino para futuras investigaciones y evaluaciones de la propuesta. Se concluye que la WoT y la SIoT son dos paradigmas complementarios que nutren la evolución de la próxima generación de la IoT. Se espera que la próxima generación de la IoT sea un Multi-Agent System (MAS) generalizado. Algunos investigadores ya están apuntando a la Web y sus tecnologías (por ejemplo,Web Semántica, HTTP/S)—y más concretamente a la WoT — como el entorno que nutra a estos agentes. La SIoT puede mejorar tanto el entorno como las relaciones entre los agentes en esta fusión. Como un campo específico de la IoT, las SGs también pueden beneficiarse de los avances de la IoT.This thesis deals with two novel Internet of Things (IoT) technologies and their integration to the field of the Smart Grid (SG); these technologies are the Web of Things (WoT) and the Social Internet of Things (SIoT). The WoT is an enabling technology expected to provide a scalable and interoperable environment to the IoT using the existing web infrastructure, web protocols and the semantic web. The SIoT is expected to expand further and contribute to scalability and discoverability challenges by creating a social network of agents (objects and humans). When exploring the synergy between those technologies, we aim at providing practical and empirical evidence, usually in the form of prototype implementations and empirical experimentation. In relation to the WoT and SG, we create a prototype for the Web of Energy (WoE), that aims at addressing challenges present in the SG domain. The prototype is capable of providing interoperability and homogeneity among diverse protocols. The implementation design is based on the Actor Model, which also provides scalability in regards to the prototype. Experimentation shows that the prototype can handle the transmission of messages for time-critical SG applications. We also take another similar research direction less focused on the SG, but for a broader range of application domains. We integrate the description of flows of execution as Finite-State Machines (FSMs) using web ontologies (Resource Description Framework (RDF)) and WoT methodologies (actions are performed on the basis of calls Hyper Text Transfer Protocol/ Secure (HTTP/S) to a Uniform Resource Locator (URL)). This execution flow, which can also be a template to allow flexible configuration at runtime, is deployed and interpreted as (and through) a Virtual Object (VO). The template aims to be reusable and shareable among multiple IoT deployments within the same application domain. Due to the technologies used, the solution is not suitable for time-critical applications. Nevertheless, it is suitable for non-time-critical applications that require the deployment of similar VOs. Finally, we focus on another technology aimed at improving scalability and discoverability in IoT. The SIoT is emerging as a new IoT structure that links nodes through meaningful relationships. These relationships aim at improving discoverability; consequently, improving the scalability of an IoT network. We apply this new paradigm to optimize energy management at the demand side in a SG. Our objective is to harness the features of the SIoT to aid in the creation of Prosumer Community Group (PCG) (groups of energy users that consume or produce energy) with the same Demand Side Management (DSM) goal. We refer to the synergy between SIoT and SG as Social Internet of Energy (SIoE). Therefore, with the SIoE and focusing on a specific challenge, we set the conceptual basis for the integration between SIoT and SG. Initial experiments show promising results and pave the way for further research and evaluation of the proposal. We conclude that the WoT and the SIoT are two complementary paradigms that nourish the evolution of the next generation IoT. The next generation IoT is expected to be a pervasive Multi-Agent System (MAS). Some researchers are already pointing at the Web and its technologies (e.g. Semantic Web, HTTP/S) — and more concretely at the WoT — as the environment nourishing the agents. The SIoT can enhance both the environment and the relationships between agents in this fusion. As a specific field of the IoT, the SG can also benefit from IoT advancements

    New Challenges on Web Architectures for the Homogenization of the Heterogeneity of Smart Objects in the Internet of Things

    Get PDF
    Aquesta tesi tracta de dues de les noves tecnologies relacionades amb la Internet of Things (IoT) i la seva integració amb el camp de les Smart Grids (SGs); aquestes tecnologies son la Web of Things (WoT) i la Social Internet of Things (SIoT). La WoT és una tecnologia que s’espera que proveeixi d’un entorn escalable i interoperable a la IoT usant la infraestructura web existent, els protocols web y la web semàntica. També s’espera que la SIoT contribueixi a solucionar els reptes d’escalabilitat i capacitat de descobriment creant una xarxa social d’agents (objectes i humans). Per explorar la sinergia entre aquestes tecnologies, l’objectiu és el de proporcionar evidència pràctica i empírica, generalment en forma de prototips d’implementació i experimentació empírica. En relació amb la WoT i les SGs, s’ha creat un prototip per al Web of Energy (WoE) que té com a objectiu abordar els desafiaments presents en el domini les SGs. El prototip és capaç de proporcionar interoperabilitat i homogeneïtat entre diversos protocols. El disseny d’implementació es basa en el Model d’Actors, que també proporciona escalabilitat del prototip. L’experimentació mostra que el prototip pot gestionar la transmissió de missatges per a aplicacions de les SGs que requereixen que la comunicació es realitzi sota llindars de temps crítics. També es pren una altra direcció d’investigació similar, menys centrada en les SGs, però per a una gamma més àmplia de dominis d’aplicació. S’integra la descripció dels fluxos d’execució com a màquines d’estats finits utilitzant ontologies web (Resource Description Framework (RDF)) i metodologies de la WoT (les accions es realitzen basant-se en peticions Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Aquest flux d’execució, que també pot ser un plantilla per a permetre una configuració flexible en temps d’execució, s’implementa i interpreta com si fos (i mitjançant) un Virtual Object (VO). L’objectiu de la plantilla és ser reutilitzable i poder-se compartir entre múltiples desplegaments de la IoT dins el mateix domini d’aplicació. A causa de les tecnologies utilitzades, la solució no és adequada per a aplicacions de temps crític (llindar de temps relativament baix i rígid). No obstant això, és adequat per a aplicacions que no demanden resposta en un temps crític i que requereixen el desplegament de VOs similars en el que fa referència al flux d’execució. Finalment, el treball s’enfoca en una altra tecnologia destinada a millorar l’escalabilitat i la capacitat de descobriment en la IoT. La SIoT està sorgint com una nova estructura de la IoT que uneix els nodes a través de relacions significatives. Aquestes relacions tenen com a objectiu millorar la capacitat de descobriment; en conseqüència, millora la escalabilitat d’una xarxa de la IoT. En aquest treball s’aplica aquest nou paradigma per optimitzar la gestió de l’energia en el costat de la demanda a les SGs. L’objectiu és aprofitar les característiques de la SIoT per ajudar a la creació de Prosumer Community Groups (PCGs) (grups d’usuaris que consumeixen o produeixen energia) amb el mateix objectiu d’optimització en l’ús de l’energia. La sinergia entre la SIoT i les SGs s’ha anomenat Social Internet of Energy (SIoE). Per tant, amb la SIoE i amb el focus en un desafiament específic, s’estableix la base conceptual per a la integració entre la SIoT i les SGs. Els experiments inicials mostren resultats prometedors i aplanen el camí per a futures investigacions i avaluacions de la proposta. Es conclou que el WoT i la SIoT són dos paradigmes complementaris que nodreixen l’evolució de la propera generació de la IoT. S’espera que la propera generació de la IoT sigui un Multi-Agent System (MAS) generalitzat. Alguns investigadors ja estan apuntant a la Web i les seves tecnologies (per exemple, Web Semàntica, HTTP/S)—i més concretamente a la WoT — com a l’entorn que nodreixi a aquests agents. La SIoT pot millorar tant l’entorn com les relacions entre els agents en aquesta fusió. Les SGs també poden beneficiar-se dels avenços de la IoT, ja que es poden considerar com una aplicació específica d’aquesta última.  Esta tesis trata de dos de las novedosas tecnologías relacionadas con la Internet of Things (IoT) y su integración con el campo de las Smart Grids (SGs); estas tecnologías son laWeb of Things (WoT) y la Social Internet of Things (SIoT). La WoT es una tecnología que se espera que provea de un entorno escalable e interoperable a la IoT usando la infraestructura web existente, los protocolos web y la web semántica. También se espera que la SIoT contribuya a solucionar los retos de escalabilidad y capacidad de descubrimiento creando una red social de agentes (objetos y humanos). Para explorar la sinergia entre estas tecnologías, el objetivo es el de proporcionar evidencia práctica y empírica, generalmente en forma de prototipos de implementación y experimentación empírica. En relación con la WoT y las SGs, se ha creado un prototipo para la Web of Energy (WoE) que tiene como objetivo abordar los desafíos presentes en el dominio las SGs. El prototipo es capaz de proporcionar interoperabilidad y homogeneidad entre diversos protocolos. El diseño de implementación se basa en el Modelo de Actores, que también proporciona escalabilidad del prototipo. La experimentación muestra que el prototipo puede manejar la transmisión de mensajes para aplicaciones de las SGs que requieran que la comunicación se realice bajo umbrales de tiempo críticos. También se toma otra dirección de investigación similar, menos centrada en las SGs, pero para una gama más amplia de dominios de aplicación. Se integra la descripción de los flujos de ejecución como máquinas de estados finitos utilizando ontologías web (Resource Description Framework (RDF)) y metodologías de la WoT (las acciones se realizan basándose en peticiones Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Este flujo de ejecución, que también puede ser una plantilla para permitir una configuración flexible en tiempo de ejecución, se implementa e interpreta como si fuera (y a través de) un Virtual Object (VO). El objetivo de la plantilla es que sea reutilizable y se pueda compartir entre múltiples despliegues de la IoT dentro del mismo dominio de aplicación. Debido a las tecnologías utilizadas, la solución no es adecuada para aplicaciones de tiempo crítico (umbral de tiempo relativamente bajo y rígido). Sin embargo, es adecuado para aplicaciones que no demandan respuesta en un tiempo crítico y que requieren el despliegue de VOs similares en cuanto al flujo de ejecución. Finalmente, el trabajo se enfoca en otra tecnología destinada a mejorar la escalabilidad y la capacidad de descubrimiento en la IoT. La SIoT está emergiendo como una nueva estructura de la IoT que une los nodos a través de relaciones significativas. Estas relaciones tienen como objetivo mejorar la capacidad de descubrimiento; en consecuencia, mejora la escalabilidad de una red de la IoT. En este trabajo se aplica este nuevo paradigma para optimizar la gestión de la energía en el lado de la demanda en las SGs. El objetivo es aprovechar las características de la SIoT para ayudar en la creación de Prosumer Community Groups (PCGs) (grupos de usuarios que consumen o producen energía) con el mismo objetivo de optimización en el uso de la energía. La sinergia entre la SIoT y las SGs ha sido denominada Social Internet of Energy (SIoE). Por lo tanto, con la SIoE y con el foco en un desafío específico, se establece la base conceptual para la integración entre la SIoT y las SG. Los experimentos iniciales muestran resultados prometedores y allanan el camino para futuras investigaciones y evaluaciones de la propuesta. Se concluye que la WoT y la SIoT son dos paradigmas complementarios que nutren la evolución de la próxima generación de la IoT. Se espera que la próxima generación de la IoT sea un Multi-Agent System (MAS) generalizado. Algunos investigadores ya están apuntando a la Web y sus tecnologías (por ejemplo,Web Semántica, HTTP/S)—y más concretamente a la WoT — como el entorno que nutra a estos agentes. La SIoT puede mejorar tanto el entorno como las relaciones entre los agentes en esta fusión. Como un campo específico de la IoT, las SGs también pueden beneficiarse de los avances de la IoT.This thesis deals with two novel Internet of Things (IoT) technologies and their integration to the field of the Smart Grid (SG); these technologies are the Web of Things (WoT) and the Social Internet of Things (SIoT). The WoT is an enabling technology expected to provide a scalable and interoperable environment to the IoT using the existing web infrastructure, web protocols and the semantic web. The SIoT is expected to expand further and contribute to scalability and discoverability challenges by creating a social network of agents (objects and humans). When exploring the synergy between those technologies, we aim at providing practical and empirical evidence, usually in the form of prototype implementations and empirical experimentation. In relation to the WoT and SG, we create a prototype for the Web of Energy (WoE), that aims at addressing challenges present in the SG domain. The prototype is capable of providing interoperability and homogeneity among diverse protocols. The implementation design is based on the Actor Model, which also provides scalability in regards to the prototype. Experimentation shows that the prototype can handle the transmission of messages for time-critical SG applications. We also take another similar research direction less focused on the SG, but for a broader range of application domains. We integrate the description of flows of execution as Finite-State Machines (FSMs) using web ontologies (Resource Description Framework (RDF)) and WoT methodologies (actions are performed on the basis of calls Hyper Text Transfer Protocol/ Secure (HTTP/S) to a Uniform Resource Locator (URL)). This execution flow, which can also be a template to allow flexible configuration at runtime, is deployed and interpreted as (and through) a Virtual Object (VO). The template aims to be reusable and shareable among multiple IoT deployments within the same application domain. Due to the technologies used, the solution is not suitable for time-critical applications. Nevertheless, it is suitable for non-time-critical applications that require the deployment of similar VOs. Finally, we focus on another technology aimed at improving scalability and discoverability in IoT. The SIoT is emerging as a new IoT structure that links nodes through meaningful relationships. These relationships aim at improving discoverability; consequently, improving the scalability of an IoT network. We apply this new paradigm to optimize energy management at the demand side in a SG. Our objective is to harness the features of the SIoT to aid in the creation of Prosumer Community Group (PCG) (groups of energy users that consume or produce energy) with the same Demand Side Management (DSM) goal. We refer to the synergy between SIoT and SG as Social Internet of Energy (SIoE). Therefore, with the SIoE and focusing on a specific challenge, we set the conceptual basis for the integration between SIoT and SG. Initial experiments show promising results and pave the way for further research and evaluation of the proposal. We conclude that the WoT and the SIoT are two complementary paradigms that nourish the evolution of the next generation IoT. The next generation IoT is expected to be a pervasive Multi-Agent System (MAS). Some researchers are already pointing at the Web and its technologies (e.g. Semantic Web, HTTP/S) — and more concretely at the WoT — as the environment nourishing the agents. The SIoT can enhance both the environment and the relationships between agents in this fusion. As a specific field of the IoT, the SG can also benefit from IoT advancements

    AEGIS Platforms: The Potential Impact of Open Architecture in Sustaining Engineering

    Get PDF
    Sponsored Report (for Acquisition Research Program)This proof-of-concept case study analyzes the potential benefits of open architecture (OA) in the AEGIS software maintenance and upgrade process. In a multi-phased approach, the Knowledge value Added/Real-Options (KVA+RO) framework was applied to sustaining engineering on specific AEGIS software processes.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    Get PDF
    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the mission model of the future for the FDF based on NASA's current mission list and planning for the Constellation Program. As part of this discussion the following are addressed: the relevance and benefits of a multi-mission facility for NASA's navigation operations in the future; anticipated technologies affecting ground orbit determination; continued incorporation of Commercial Off-the-shelf (COTS) software into the FDF; challenges of a business model that relies entirely on user fees to fund facility upgrades; anticipated changes in flight dynamics services required; and considerations for defining architecture upgrades given a set of cost drivers

    Crawling hardware for OpenTOSCA

    Get PDF
    Heterogeneity is the essence of the IoT paradigm. There is heterogeneity in communication and transport protocols, in network infrastructure, and even among the interacting devices themselves. Managing discovery of the different devices in such a paradigm is an extremely complex task. The typical solutions include an abstraction layer, commonly known as the middleware layer, that handles this complexity for the devices, thereby, allowing them to interact with one another. One major limitation of the existing middleware solutions is in their ability to allow for an easily configurable approach required to handle the tremendous scale of heterogeneous components in the IoT. The objective of this thesis is to develop such a highly configurable discovery middleware approach. The proposed approach aims to discover a variety of heterogeneous devices and services depending on a multi-level plugin layer, consisting of independent plugins that interact with each other based on the pipes and filters architectural pattern. To allow for the dynamic configuration of the middleware, a discovery configuration is developed. The output from the middleware includes a list of devices and their capabilities and is accessible via a web interface which can interact with a range of different clients. The proposed approach is validated on a scenario in a real-life environment
    • …
    corecore