3,539 research outputs found

    Extruder for food product (otak–otak) with heater and roll cutter

    Get PDF
    Food extrusion is a form of extrusion used in food industries. It is a process by which a set of mixed ingredients are forced through an opening in a perforated plate or die with a design specific to the food, and is then cut to a specified size by blades [1]. Summary of the invention principal objects of the present invention are to provide a machine capable of continuously producing food products having an’ extruded filler material of meat or similarity and an extruded outer covering of a moldable food product, such as otak-otak, that completely envelopes the filler material

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Occupancy driven supervisory control of indoor environment systems to minimise energy consumption of airport terminal building

    Get PDF
    A very economical way of reducing the operational energy consumed by large commercial buildings such as an airport terminal is the automatic control of its active energy systems. Such control can adjust the indoor environment systems setpoints to satisfy comfort during occupancy or when unoccupied, initiate energy conservation setpoints and if necessary, shut down part of the building systems. Adjusting energy control setpoints manually in large commercial buildings can be a nightmare for facility managers. Incidentally for such buildings, occupancy based control strategies are not achieved through the use of conventional controllers alone. This research, therefore, investigated the potential of using a high-level control system in airport terminal building. The study presents the evolution of a novel fuzzy rule-based supervisory controller, which intelligently establishes comfort setpoints based on flow of passenger through the airport as well as variable external environmental conditions. The inputs to the supervisory controller include: the time schedule of the arriving and departing passenger planes; the expected number of passengers; zone daylight illuminance levels; and external temperature. The outputs from the supervisory controller are the low-level controllers internal setpoint profile for thermal comfort, visual comfort and indoor air quality. Specifically, this thesis makes contribution to knowledge in the following ways: It utilised artificial intelligence to develop a novel fuzzy rule-based, energy-saving supervisory controller that is able to establish acceptable indoor environmental quality for airport terminals based on occupancy schedules and ambient conditions. It presents a unique methodology of designing a supervisory controller using expert knowledge of an airport s indoor environment systems through MATLAB/Simulink platform with the controller s performance evaluated in both MATLAB and EnergyPlus simulation engine. Using energy conservation strategies (setbacks and switch-offs), the pro-posed supervisory control system was shown to be capable of reducing the energy consumed in the Manchester Airport terminal building by up to 40-50% in winter and by 21-27% in summer. It demonstrates that if a 45 minutes passenger processing time is aimed for instead of the 60 minutes standard time suggested by ICAO, energy consumption is significantly reduced (with less carbon emission) in winter particularly. The potential of the fuzzy rule-based supervisory controller to optimise comfort with minimal energy based on variation in occupancy and external conditions was demonstrated through this research. The systematic approach adopted, including the use of artificial intelligence to design supervisory controllers, can be extended to other large buildings which have variable but predictable occupancy patterns

    An ARTMAP-incorporated Multi-Agent System for Building Intelligent Heat Management

    Get PDF
    This paper presents an ARTMAP-incorporated multi-agent system (MAS) for building heat management, which aims to maintain the desired space temperature defined by the building occupants (thermal comfort management) and improve energy efficiency by intelligently controlling the energy flow and usage in the building (building energy control). Existing MAS typically uses rule-based approaches to describe the behaviours and the processes of its agents, and the rules are fixed. The incorporation of artificial neural network (ANN) techniques to the agents can provide for the required online learning and adaptation capabilities. A three-layer MAS is proposed for building heat management and ARTMAP is incorporated into the agents so as to facilitate online learning and adaptation capabilities. Simulation results demonstrate that ARTMAP incorporated MAS provides better (automated) energy control and thermal comfort management for a building environment in comparison to its existing rule-based MAS approach

    Designing an occupancy flow-based controller for airport terminals

    Get PDF
    One of the most cost-effective ways to save energy in commercial buildings is through designing a dedicated controller for adjusting environmental set-points according occupancy flow. This paper presents the design of a fuzzy rule-based supervisory controller for reducing energy consumptions while simultaneously providing comfort for passengers in a large airport terminal building. The inputs to the controller are the time schedule of the arrival and departure of passenger planes as well as the expected number of passengers, zone global illuminance (daylight) and external temperature. The outputs from the controller are optimised temperature, airflow and lighting set-point profiles for the building. The supervisory controller was designed based on expert knowledge in MATLAB/Simulink, and then validated using simulation studies. The simulation results demonstrate significant potential for energy savings in the controller's ability to maintain comfort by adjusting set-points according to the flow of passengers. Practical application : The systematic approach adopted here, including the use of artificial intelligence to design supervisory controllers, can be extended to other large buildings which have variable but predictable occupancy patterns like the restricted area of the airport terminal building

    Entrepreneurship Through Start-ups in Hill Areas Using Photovoltaic Systems

    Full text link
    There is large potential for generating solar power in Uttarakhand (India) endowed with natural resources. The extensive use of solar energy through solar PV panels in Distributed and Renewable Electricity Generation is significant to utilize multi climatic zones of hilly areas. In this regard, UREDA (Uttarakhand Renewable Energy Development Agency) targets to achieve a huge boost of solar PV battery backup with approved subsidy budget of INR 6 billion to 50 billion by 2019/20 under JNNSM (Jawaharlal Nehru National Solar Mission). This investment will increase productivity, enhance employment opportunities and improve quality of education. However, maximization of power output from panels used for same is achieved through use of MPPT (Maximum Power Point Trackers). The commercially installed solar power systems can be made to accomplish higher efficiency by implementing MPPT systems in start ups. In this paper, the effort is made to use MPPT system designed by intelligent controller for implementation in PV based utility systems. The regulated voltage output from MPPT system is obtained irrespective of fluctuations in environment. These variations are tested for changing temperature and irradiance due to shading or partial unavailability of sun. The results of same have been optimized through MATLAB/SIMULINK. The model designed is intended to be a beneficial source for PV engineers and researchers to provide high efficiency with the use of MPPT

    Program latihan industri di Kolej Universiti Teknologi Tun Hussein Onn : kajian terhadap perlaksanaan sistem penilaian

    Get PDF
    Kajian yang dijalankan adalah bertajuk "Program Lalilian lndustri Di Kolej Universiti Teknologi Tun Hussein Onn : Kajian Terhadap Perlaksanaan Sistem Penilaian". Sampel terdin daripada 6 orang pakar serta 63 orang pelajar yang terlibat dalam latihan industri. Maklumat yang diperolehi berdasarkan kaedah kualitatif dan kuantitatif Data dianalisis untuk meninjau kaedah penilaian yang dijalankan dan seterusnya memastikan apakali sistem penilaian yang perlu diperbaiki. Secara keseluruhannya, kebanyakan responden berpendapat bahawa sistem penilaian yang sedia ada adalah perlu diperbaki dan disistematikkan selaras dengan ISO 9000 : 2001. Berdasarkan daripada keputusan yang diperolehi dan bimbingnan pakar dari Unit Latihan lndustri KUiTTHO, maka satu "Buku Panduan Penilaian Latihan lndustri" dihasilkan dengan panduan yang ringkas dan lampiran borang-borang yang telah diperbaiki dan diubahsuai. Diharapkan produk mi dapat digunakan untuk masa-masa akan datang

    A Lighting Control System in Buildings based on Fuzzy Logic

    Get PDF
    Lighting generally consumed 25%-50% of total electricity consumption in a building. Nowadays, the building lighting source is dominated by the use of fluorescent lamps. The previous technical papers by other researchers had focused on power density control of incandescent lamps, which is now rarely used, unconsidered national standard as control reference value, and required a high-cost in investment. By these reasons, this paper proposes a building lighting system based on fuzzy logic scheme to automate fluorescent lamps in order to achieve illumination according to Indonesian National Standard (SNI). The input variables were indoor lighting, inference from outdoor lighting, and occupancy. The output variable was the required illumination to achieve the standard. The required illumination determined the number of lamps that had to be turned on. In the experiment result, a classroom illumination of lighting without controller in workdays was about 350 lux, while with the proposed controller it varied between 250–300 lux close to the SNI, i.e. 250 lux. Meanwhile, with the proposed controller the electricity consumption for a classroom was 75% lower than the lighting without controller.

    Functions of fuzzy logic based controllers used in smart building

    Get PDF
    The main aim of this study is to support design and development processes of advanced fuzzy-logic-based controller for smart buildings e.g., heating, ventilation and air conditioning, heating, ventilation and air conditioning (HVAC) and indoor lighting control systems. Moreover, the proposed methodology can be used to assess systems energy and environmental performances, also compare energy usages of fuzzy control systems with the performances of conventional on/off and proportional integral derivative controller (PID). The main objective and purpose of using fuzzy-logic-based model and control is to precisely control indoor thermal comfort e.g., temperature, humidity, air quality, air velocity, thermal comfort, and energy balance. Moreover, this article present and highlight mathematical models of indoor temperature and humidity transfer matrix, uncertainties of users’ comfort preference set-points and a fuzzy algorithm
    • …
    corecore