169 research outputs found

    Composite modelling in 3-D mechanics utilizing Transmission Line Modelling (TLM) and Functional Mock-up Interface (FMI)

    No full text
    Composite modelling and simulation is a solution to utilize investments in models and tools, use the right tool for the right task, increase the accuracy by means of more accurate modelled boundary conditions, switch between levels in model complexity for a specific sub-system, and facilitate co-operation in organizations. With the new Functional Mock-up Interface (FMI) standardization, efforts are increasing to make this happen. SKF BEAST is an advanced dynamic simulation tool for rolling bearings and other mechanical systems with contacts. The tool incorporates a framework for composite modelling and co-simulation, i.e., a Master Simulation Tool (MST). It uses Transmission Line Modelling (TLM) to ensure robust numerical behaviour of the complete composite system model and supports the Functional Mock-up Interface (FMI) for model import, including both model exchange and co-simulation. In this paper, the tools and the techniques for composite modelling are discussed in further detail and application examples are given

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    An investigation into heavy vehicle drum brake squeal

    Get PDF
    Many mechanisms have been suggested for brake squeal over many years. In order to identify the most appropriate of these mechanisms, an experimental investigation has been carried out to define in detail the vibration characteristics of a squealing heavy vehicle air operated drum brake on both a vehicle and a laboratory brake test rig. This required the development of a novel 'scanning' technique for the modal analysis of the rotating drum, which showed the presence of well-defined complex wavelike modes. From these results, the dynamic behaviour of the drum, in particular, is found to be in good qualitative agreement with the predictions of a simple 'binary flutter' mechanism of squeal. Based on the role of rotor symmetry in this mechanism, a means of decoupling, flutter modes is developed involving a reduction in the rotational symmetry of the drum by means of attaching masses in a defined pattern at its periphery. It is shown theoretically that such decoupling would be expected to increase the dynamic stability of the brake, and experimental application of the technique confirms its effectiveness in reducing or eliminating squeal. Practical design aspects of reducing the rotational symmetry of the drum are considered, using finite element modelling, and it is also shown that the technique can be effective in other types of vehicle brake, such as disc brakes and hydraulic drum brakes. The simple lumped parameter models used in the above work are inadequate as brake design tools, however, and so a novel application of finite element modelling is used to extend the principle of the binary flutter mechanism to a more detailed model of a complete brake. This is shown to be capable of predicting known features of squeal and may be used as a brake design tool for both the brake structure and the friction material

    Aeronautical engineering. A continuing bibliography with indexes, supplement 114

    Get PDF
    This bibliography lists 394 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1979

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Development of front-end pre-analytical modules for integrated blood plasma separation

    Get PDF
    Blood plasma separation is a fundamental step in numerous biomedical assays involving low abundance plasma-borne biomarkers. The interest in microscale blood plasma separation solutions has emerged with the development of microfluidic technologies in the early 2000s and has continued in recent years as few solutions have so far achieved both high yield and high purity without sample dilution, in volumes compatible with current clinical assays. Hydrodynamic or acoustic blood plasma separation microdevices have attracted considerable attention from the microfluidic community in the continuous separation of blood samples with a volume of a few mL due to their high throughput and insensitivity to clogging. However, obtaining a high yield from whole blood is challenging because the volume of red blood cells or hematocrit typically rises above physiological levels after each separation region, following plasma extraction. Some key parameters that influence the microfluidic blood plasma separation efficiency and yield of such devices have been investigated in this project. In particular, this project sought to establish experimentally, for the first time, the maximum hematocrit level and flow rate achievable in a microchannel, without hemolysis. Furthermore, the influence of flow fluctuation in syringe pumps, which are commonly employed in microfluidic setups, on the separation performance of blood plasma separation devices was investigated. These studies not only reveal the reasons behind the slow progress in the development of high-throughput microfluidic blood plasma separation devices capable of handling whole blood samples but also provides a framework for the design optimisation of future microfluidic blood plasma separation devices. While for low to mid-volume clinical sample volume (<4 mL), microscale solutions are viable, for high clinical sample volume (>4 mL) blood plasma separation traditional centrifugation approach remains the gold standard but is currently cost-prohibitive. In the third part of this thesis, a low-cost and open-source centrifugation setup for clinical blood sample volume has been developed. This centrifugation system capable of processing clinical blood tubes could be valuable to mobile laboratories or low-resource settings where centrifugation is required immediately after blood withdrawal for further testing

    Cell Culture

    Get PDF
    Cell culture is cell cloning technology that simulates in vivo environment conditions such as asepsis, appropriate temperature, and pH as well as certain nutritional conditions to enable cells to survive, grow, reproduce, and maintain their structure and function. Cell culture can be used to grow human, animal, plant, and microbial cells. Each type of cell culture has its own characteristics and essential conditions. This book focuses on the advanced technology and applications of cell culture in the research and practice of medical and life sciences. Chapters address such topics as primary cancer cell cultures, 2D and 3D cell cultures, stem cells, nanotechnology, and more
    corecore