1,223 research outputs found

    A 100-MIPS GaAs asynchronous microprocessor

    Get PDF
    The authors describe how they ported an asynchronous microprocessor previously implemented in CMOS to gallium arsenide, using a technology-independent asynchronous design technique. They introduce new circuits including a sense-amplifier, a completion detection circuit, and a general circuit structure for operators specified by production rules. The authors used and tested these circuits in a variety of designs

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Asynchronous Early Output Dual-Bit Full Adders Based on Homogeneous and Heterogeneous Delay-Insensitive Data Encoding

    Get PDF
    This paper presents the designs of asynchronous early output dual-bit full adders without and with redundant logic (implicit) corresponding to homogeneous and heterogeneous delay-insensitive data encoding. For homogeneous delay-insensitive data encoding only dual-rail i.e. 1-of-2 code is used, and for heterogeneous delay-insensitive data encoding 1-of-2 and 1-of-4 codes are used. The 4-phase return-to-zero protocol is used for handshaking. To demonstrate the merits of the proposed dual-bit full adder designs, 32-bit ripple carry adders (RCAs) are constructed comprising dual-bit full adders. The proposed dual-bit full adders based 32-bit RCAs incorporating redundant logic feature reduced latency and area compared to their non-redundant counterparts with no accompanying power penalty. In comparison with the weakly indicating 32-bit RCA constructed using homogeneously encoded dual-bit full adders containing redundant logic, the early output 32-bit RCA comprising the proposed homogeneously encoded dual-bit full adders with redundant logic reports corresponding reductions in latency and area by 22.2% and 15.1% with no associated power penalty. On the other hand, the early output 32-bit RCA constructed using the proposed heterogeneously encoded dual-bit full adder which incorporates redundant logic reports respective decreases in latency and area than the weakly indicating 32-bit RCA that consists of heterogeneously encoded dual-bit full adders with redundant logic by 21.5% and 21.3% with nil power overhead. The simulation results obtained are based on a 32/28nm CMOS process technology

    Latency Optimized Asynchronous Early Output Ripple Carry Adder based on Delay-Insensitive Dual-Rail Data Encoding

    Full text link
    Asynchronous circuits employing delay-insensitive codes for data representation i.e. encoding and following a 4-phase return-to-zero protocol for handshaking are generally robust. Depending upon whether a single delay-insensitive code or multiple delay-insensitive code(s) are used for data encoding, the encoding scheme is called homogeneous or heterogeneous delay-insensitive data encoding. This article proposes a new latency optimized early output asynchronous ripple carry adder (RCA) that utilizes single-bit asynchronous full adders (SAFAs) and dual-bit asynchronous full adders (DAFAs) which incorporate redundant logic and are based on the delay-insensitive dual-rail code i.e. homogeneous data encoding, and follow a 4-phase return-to-zero handshaking. Amongst various RCA, carry lookahead adder (CLA), and carry select adder (CSLA) designs, which are based on homogeneous or heterogeneous delay-insensitive data encodings which correspond to the weak-indication or the early output timing model, the proposed early output asynchronous RCA that incorporates SAFAs and DAFAs with redundant logic is found to result in reduced latency for a dual-operand addition operation. In particular, for a 32-bit asynchronous RCA, utilizing 15 stages of DAFAs and 2 stages of SAFAs leads to reduced latency. The theoretical worst-case latencies of the different asynchronous adders were calculated by taking into account the typical gate delays of a 32/28nm CMOS digital cell library, and a comparison is made with their practical worst-case latencies estimated. The theoretical and practical worst-case latencies show a close correlation....Comment: arXiv admin note: text overlap with arXiv:1704.0761

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Practical advances in asynchronous design and in asynchronous/synchronous interfaces

    Get PDF
    Journal ArticleAsynchronous systems are being viewed as an increasingly viable alternative to purely synchronous systems. This paper gives an overview of the current state of the art in practical asynchronous circuit and system design in four areas: controllers, datapaths, processors, and the design of asynchronous/synchronous interfaces

    Submicron Systems Architecture Project : Semiannual Technical Report

    Get PDF
    The Mosaic C is an experimental fine-grain multicomputer based on single-chip nodes. The Mosaic C chip includes 64KB of fast dynamic RAM, processor, packet interface, ROM for bootstrap and self-test, and a two-dimensional selftimed router. The chip architecture provides low-overhead and low-latency handling of message packets, and high memory and network bandwidth. Sixty-four Mosaic chips are packaged by tape-automated bonding (TAB) in an 8 x 8 array on circuit boards that can, in turn, be arrayed in two dimensions to build arbitrarily large machines. These 8 x 8 boards are now in prototype production under a subcontract with Hewlett-Packard. We are planning to construct a 16K-node Mosaic C system from 256 of these boards. The suite of Mosaic C hardware also includes host-interface boards and high-speed communication cables. The hardware developments and activities of the past eight months are described in section 2.1. The programming system that we are developing for the Mosaic C is based on the same message-passing, reactive-process, computational model that we have used with earlier multicomputers, but the model is implemented for the Mosaic in a way that supports finegrain concurrency. A process executes only in response to receiving a message, and may in execution send messages, create new processes, and modify its persistent variables before it either exits or becomes dormant in preparation for receiving another message. These computations are expressed in an object-oriented programming notation, a derivative of C++ called C+-. The computational model and the C+- programming notation are described in section 2.2. The Mosaic C runtime system, which is written in C+-, provides automatic process placement and highly distributed management of system resources. The Mosaic C runtime system is described in section 2.3

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors
    • …
    corecore