2,002 research outputs found

    Formal Verification of Safety Properties for Ownership Authentication Transfer Protocol

    Full text link
    In ubiquitous computing devices, users tend to store some valuable information in their device. Even though the device can be borrowed by the other user temporarily, it is not safe for any user to borrow or lend the device as it may cause private data of the user to be public. To safeguard the user data and also to preserve user privacy we propose and model the technique of ownership authentication transfer. The user who is willing to sell the device has to transfer the ownership of the device under sale. Once the device is sold and the ownership has been transferred, the old owner will not be able to use that device at any cost. Either of the users will not be able to use the device if the process of ownership has not been carried out properly. This also takes care of the scenario when the device has been stolen or lost, avoiding the impersonation attack. The aim of this paper is to model basic process of proposed ownership authentication transfer protocol and check its safety properties by representing it using CSP and model checking approach. For model checking we have used a symbolic model checker tool called NuSMV. The safety properties of ownership transfer protocol has been modeled in terms of CTL specification and it is observed that the system satisfies all the protocol constraint and is safe to be deployed.Comment: 16 pages, 7 figures,Submitted to ADCOM 201

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    A Survey of RFID Authentication Protocols Based on Hash-Chain Method

    Get PDF
    Security and privacy are the inherent problems in RFID communications. There are several protocols have been proposed to overcome those problems. Hash chain is commonly employed by the protocols to improve security and privacy for RFID authentication. Although the protocols able to provide specific solution for RFID security and privacy problems, they fail to provide integrated solution. This article is a survey to closely observe those protocols in terms of its focus and limitations.Comment: Third ICCIT 2008 International Conference on Convergence and Hybrid Information Technolog

    Efficient and Low-Cost RFID Authentication Schemes

    Get PDF
    Security in passive resource-constrained Radio Frequency Identification (RFID) tags is of much interest nowadays. Resistance against illegal tracking, cloning, timing, and replay attacks are necessary for a secure RFID authentication scheme. Reader authentication is also necessary to thwart any illegal attempt to read the tags. With an objective to design a secure and low-cost RFID authentication protocol, Gene Tsudik proposed a timestamp-based protocol using symmetric keys, named YA-TRAP*. Although YA-TRAP* achieves its target security properties, it is susceptible to timing attacks, where the timestamp to be sent by the reader to the tag can be freely selected by an adversary. Moreover, in YA-TRAP*, reader authentication is not provided, and a tag can become inoperative after exceeding its pre-stored threshold timestamp value. In this paper, we propose two mutual RFID authentication protocols that aim to improve YA-TRAP* by preventing timing attack, and by providing reader authentication. Also, a tag is allowed to refresh its pre-stored threshold value in our protocols, so that it does not become inoperative after exceeding the threshold. Our protocols also achieve other security properties like forward security, resistance against cloning, replay, and tracking attacks. Moreover, the computation and communication costs are kept as low as possible for the tags. It is important to keep the communication cost as low as possible when many tags are authenticated in batch-mode. By introducing aggregate function for the reader-to-server communication, the communication cost is reduced. We also discuss different possible applications of our protocols. Our protocols thus capture more security properties and more efficiency than YA-TRAP*. Finally, we show that our protocols can be implemented using the current standard low-cost RFID infrastructures.Comment: 21 pages, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), Vol 2, No 3, pp. 4-25, 201
    corecore