1,295 research outputs found

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobi–Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Combinatorial problems in solving linear systems

    Get PDF
    42 pages, available as LIP research report RR-2009-15Numerical linear algebra and combinatorial optimization are vast subjects; as is their interaction. In virtually all cases there should be a notion of sparsity for a combinatorial problem to arise. Sparse matrices therefore form the basis of the interaction of these two seemingly disparate subjects. As the core of many of today's numerical linear algebra computations consists of the solution of sparse linear system by direct or iterative methods, we survey some combinatorial problems, ideas, and algorithms relating to these computations. On the direct methods side, we discuss issues such as matrix ordering; bipartite matching and matrix scaling for better pivoting; task assignment and scheduling for parallel multifrontal solvers. On the iterative method side, we discuss preconditioning techniques including incomplete factorization preconditioners, support graph preconditioners, and algebraic multigrid. In a separate part, we discuss the block triangular form of sparse matrices

    SparseM: A Sparse Matrix Package for R *

    Get PDF
    SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices.

    Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards

    Full text link
    We discuss an approach for solving sparse or dense banded linear systems Ax=b{\bf A} {\bf x} = {\bf b} on a Graphics Processing Unit (GPU) card. The matrix ARN×N{\bf A} \in {\mathbb{R}}^{N \times N} is possibly nonsymmetric and moderately large; i.e., 10000N50000010000 \leq N \leq 500000. The ${\it split\ and\ parallelize}( ({\tt SaP})approachseekstopartitionthematrix) approach seeks to partition the matrix {\bf A}intodiagonalsubblocks into diagonal sub-blocks {\bf A}_i,, i=1,\ldots,P,whichareindependentlyfactoredinparallel.Thesolutionmaychoosetoconsiderortoignorethematricesthatcouplethediagonalsubblocks, which are independently factored in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal sub-blocks {\bf A}_i.Thisapproach,alongwiththeKrylovsubspacebasediterativemethodthatitpreconditions,areimplementedinasolvercalled. This approach, along with the Krylov subspace-based iterative method that it preconditions, are implemented in a solver called {\tt SaP::GPU},whichiscomparedintermsofefficiencywiththreecommonlyusedsparsedirectsolvers:, which is compared in terms of efficiency with three commonly used sparse direct solvers: {\tt PARDISO},, {\tt SuperLU},and, and {\tt MUMPS}.. {\tt SaP::GPU},whichrunsentirelyontheGPUexceptseveralstagesinvolvedinpreliminaryrowcolumnpermutations,isrobustandcompareswellintermsofefficiencywiththeaforementioneddirectsolvers.InacomparisonagainstIntels, which runs entirely on the GPU except several stages involved in preliminary row-column permutations, is robust and compares well in terms of efficiency with the aforementioned direct solvers. In a comparison against Intel's {\tt MKL},, {\tt SaP::GPU}alsofareswellwhenusedtosolvedensebandedsystemsthatareclosetobeingdiagonallydominant. also fares well when used to solve dense banded systems that are close to being diagonally dominant. {\tt SaP::GPU}$ is publicly available and distributed as open source under a permissive BSD3 license.Comment: 38 page

    Distributed Triangle Counting in the Graphulo Matrix Math Library

    Full text link
    Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for server-side processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.Comment: Honorable mention in the 2017 IEEE HPEC's Graph Challeng
    corecore