205,015 research outputs found

    Desegregating HRM: A Review and Synthesis of Micro and Macro Human Resource Management Research

    Get PDF
    Since the early 1980ā€™s the field of HRM has seen the independent evolution of two independent subfields (strategic and functional), which we believe is dysfunctional to the field as a whole. We propose a typology of HRM research based on two dimensions: Level of analysis (individual/ group or organization) and number of practices (single or multiple). We use this framework to review the recent research in each of the four sub-areas. We argue that while significant progress has been made within each area, the potential for greater gains exists by looking across each area. Toward this end we suggest some future research directions based on a more integrative view of HRM. We believe that both areas can contribute significantly to each other resulting in a more profound impact on the field of HRM than each can contribute independently

    A Goal-based Framework for Contextual Requirements Modeling and Analysis

    Get PDF
    Requirements Engineering (RE) research often ignores, or presumes a uniform nature of the context in which the system operates. This assumption is no longer valid in emerging computing paradigms, such as ambient, pervasive and ubiquitous computing, where it is essential to monitor and adapt to an inherently varying context. Besides influencing the software, context may influence stakeholders' goals and their choices to meet them. In this paper, we propose a goal-oriented RE modeling and reasoning framework for systems operating in varying contexts. We introduce contextual goal models to relate goals and contexts; context analysis to refine contexts and identify ways to verify them; reasoning techniques to derive requirements reflecting the context and users priorities at runtime; and finally, design time reasoning techniques to derive requirements for a system to be developed at minimum cost and valid in all considered contexts. We illustrate and evaluate our approach through a case study about a museum-guide mobile information system

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment
    • ā€¦
    corecore