24,720 research outputs found

    Study on the Departure Process of Discrete-Time Geo

    Get PDF
    This paper presents an analysis of the departure process of a discrete-time Geo/G/1 queue with randomized vacations. By using probability decomposition techniques and renewal process, the expression of expected number of departures during time interval (0+,n+] is derived. The relation among departure process, server state process, and service renewal process is obtained. The relation displays the decomposition characteristic of the departure process. Furthermore, the approximate expansion of the expected number of departures is gained. Since the departure process also often corresponds to an arrival process for a downstream queue in queueing network, it is hoped that the results obtained in this paper may provide useful information for queueing network

    The Mx/G/1 queue with queue length dependent service times

    Get PDF
    We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.Bong Dae Choi, Yeong Cheol Kim, Yang Woo Shin, and Charles E. M. Pearc

    Bits Through Bufferless Queues

    Full text link
    This paper investigates the capacity of a channel in which information is conveyed by the timing of consecutive packets passing through a queue with independent and identically distributed service times. Such timing channels are commonly studied under the assumption of a work-conserving queue. In contrast, this paper studies the case of a bufferless queue that drops arriving packets while a packet is in service. Under this bufferless model, the paper provides upper bounds on the capacity of timing channels and establishes achievable rates for the case of bufferless M/M/1 and M/G/1 queues. In particular, it is shown that a bufferless M/M/1 queue at worst suffers less than 10% reduction in capacity when compared to an M/M/1 work-conserving queue.Comment: 8 pages, 3 figures, accepted in 51st Annual Allerton Conference on Communication, Control, and Computing, University of Illinois, Monticello, Illinois, Oct 2-4, 201

    Universality of Load Balancing Schemes on Diffusion Scale

    Full text link
    We consider a system of NN parallel queues with identical exponential service rates and a single dispatcher where tasks arrive as a Poisson process. When a task arrives, the dispatcher always assigns it to an idle server, if there is any, and to a server with the shortest queue among dd randomly selected servers otherwise (1≀d≀N)(1 \leq d \leq N). This load balancing scheme subsumes the so-called Join-the-Idle Queue (JIQ) policy (d=1)(d = 1) and the celebrated Join-the-Shortest Queue (JSQ) policy (d=N)(d = N) as two crucial special cases. We develop a stochastic coupling construction to obtain the diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime, and establish that it does not depend on the value of dd, implying that assigning tasks to idle servers is sufficient for diffusion level optimality

    On the maximum queue length in the supermarket model

    Full text link
    There are nn queues, each with a single server. Customers arrive in a Poisson process at rate Ξ»n\lambda n, where 0<Ξ»<10<\lambda<1. Upon arrival each customer selects dβ‰₯2d\geq2 servers uniformly at random, and joins the queue at a least-loaded server among those chosen. Service times are independent exponentially distributed random variables with mean 1. We show that the system is rapidly mixing, and then investigate the maximum length of a queue in the equilibrium distribution. We prove that with probability tending to 1 as nβ†’βˆžn\to\infty the maximum queue length takes at most two values, which are ln⁑ln⁑n/ln⁑d+O(1)\ln\ln n/\ln d+O(1).Comment: Published at http://dx.doi.org/10.1214/00911790500000710 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A sufficient condition for the subexponential asymptotics of GI/G/1-type Markov chains with queueing applications

    Full text link
    The main contribution of this paper is to present a new sufficient condition for the subexponential asymptotics of the stationary distribution of a GI/GI/1-type Markov chain without jumps from level "infinity" to level zero. For simplicity, we call such Markov chains {\it GI/GI/1-type Markov chains without disasters} because they are often used to analyze semi-Markovian queues without "disasters", which are negative customers who remove all the customers in the system (including themselves) on their arrivals. In this paper, we demonstrate the application of our main result to the stationary queue length distribution in the standard BMAP/GI/1 queue. Thus we obtain new asymptotic formulas and prove the existing formulas under weaker conditions than those in the literature. In addition, applying our main result to a single-server queue with Markovian arrivals and the (a,b)(a,b)-bulk-service rule (i.e., MAP/GI(a,b){\rm GI}^{(a,b)}/1 queue), we obatin a subexponential asymptotic formula for the stationary queue length distribution.Comment: Submitted for revie

    Perfect Simulation of M/G/cM/G/c Queues

    Full text link
    In this paper we describe a perfect simulation algorithm for the stable M/G/cM/G/c queue. Sigman (2011: Exact Simulation of the Stationary Distribution of the FIFO M/G/c Queue. Journal of Applied Probability, 48A, 209--213) showed how to build a dominated CFTP algorithm for perfect simulation of the super-stable M/G/cM/G/c queue operating under First Come First Served discipline, with dominating process provided by the corresponding M/G/1M/G/1 queue (using Wolff's sample path monotonicity, which applies when service durations are coupled in order of initiation of service), and exploiting the fact that the workload process for the M/G/1M/G/1 queue remains the same under different queueing disciplines, in particular under the Processor Sharing discipline, for which a dynamic reversibility property holds. We generalize Sigman's construction to the stable case by comparing the M/G/cM/G/c queue to a copy run under Random Assignment. This allows us to produce a naive perfect simulation algorithm based on running the dominating process back to the time it first empties. We also construct a more efficient algorithm that uses sandwiching by lower and upper processes constructed as coupled M/G/cM/G/c queues started respectively from the empty state and the state of the M/G/cM/G/c queue under Random Assignment. A careful analysis shows that appropriate ordering relationships can still be maintained, so long as service durations continue to be coupled in order of initiation of service. We summarize statistical checks of simulation output, and demonstrate that the mean run-time is finite so long as the second moment of the service duration distribution is finite.Comment: 28 pages, 5 figure
    • …
    corecore