431 research outputs found

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page

    Large Cardinals, Inner Models, and Determinacy:An Introductory Overview

    Get PDF

    Algebraic combinatorics in bounded induction

    Get PDF
    In this paper, new methods for analyzing models of weak subsystems of Peano Arithmetic are proposed. The focus will be on the study of algebro-combinatoric properties of certain definable cuts. Their relationship with segments that satisfy more induction, with those limited by the standard powers/roots of an element, and also with definable sets in Bounded Induction is studied. As a consequence, some considerations on the Π1-interpretability of IΔ0 in weak theories, as well as some alternative axiomatizations, are reviewed. Some of the results of the paper are obtained by immersing Bounded Induction models in its Stone-Cech Compactification, once it is endowed with a topology.Ministerio de Ciencia, Innovación y Universidades PID2019-109152GB-I0

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page

    Indeterminateness and `The' Universe of Sets: Multiversism, Potentialism, and Pluralism

    Get PDF
    In this article, I survey some philosophical attitudes to talk concerning `the' universe of sets. I separate out four different strands of the debate, namely: (i) Universism, (ii) Multiversism, (iii) Potentialism, and (iv) Pluralism. I discuss standard arguments and counterarguments concerning the positions and some of the natural mathematical programmes that are suggested by the various views

    Controlling iterated jumps of solutions to combinatorial problems

    Get PDF
    Among the Ramsey-type hierarchies, namely, Ramsey's theorem, the free set, the thin set and the rainbow Ramsey theorem, only Ramsey's theorem is known to collapse in reverse mathematics. A promising approach to show the strictness of the hierarchies would be to prove that every computable instance at level n has a low_n solution. In particular, this requires effective control of iterations of the Turing jump. In this paper, we design some variants of Mathias forcing to construct solutions to cohesiveness, the Erdos-Moser theorem and stable Ramsey's theorem for pairs, while controlling their iterated jumps. For this, we define forcing relations which, unlike Mathias forcing, have the same definitional complexity as the formulas they force. This analysis enables us to answer two questions of Wei Wang, namely, whether cohesiveness and the Erdos-Moser theorem admit preservation of the arithmetic hierarchy, and can be seen as a step towards the resolution of the strictness of the Ramsey-type hierarchies.Comment: 32 page
    corecore