191 research outputs found

    The application of non-linear dynamics to teletraffic modelling.

    Get PDF
    PhDAbstract not availableEngineering and Physical Science Research Council (EPSRC) and NORTE

    Resource Allocation for Heterogeneous Traffic in LTE Virtual Networks

    Get PDF
    Cellular network virtualization is being considered as a key trend in future mobile networks towards improved resource utilization. However, virtualization scenarios need investigation to understand the considerations which should be taken into account when deploying virtualized wireless networks in practice. Towards this, we address the performance of a virtualized network in the presence of heterogeneous classes of traffic. In previous cellular network virtualization literature, both Real time (RT) and Non-Real time (NRT) traffic requests have been included without distinction. Both types are provisioned using the same algorithm for allocation of resources specified by the Network Scheduler [1]. However, different types of traffic have different characteristics [2], e.g., RT requests are delay sensitive but may need fixed bandwidth, and hence should be treated differently, especially when wireless channel conditions are factored into the scheduling. We recognize this difference and in this paper, we propose a new approach to improve scheduling of resources for RT and NRT traffic. In particular, we prioritize the traffic belonging to different virtual slices from all service providers (SP/VEs) at the Network Scheduler before allocating resources to different SP/VEs, i.e., We form a Virtual Prioritized Slice (VPS). The virtual prioritized slice is forwarded to the VPS scheduler to serve all RT requests first. Only after the RT traffic is scheduled, the NRT traffic is provisioned using proportional fairness (PF) scheduling. We show by simulation results that this new VPS approach helps outperform recently proposed resource allocation schemes

    The role of admission control in assuring multiple services quality

    Get PDF
    Considering that network overprovisioning by itself is not always an attainable and everlasting solution, Admission Control (AC) mechanisms are recommended to keep network load controlled and assure the required service quality levels. This article debates the role of AC in multiservice IP networks, providing an overview and discussion of current and representative AC approaches, highlighting their main characteristics, pros and cons regarding the management of network services quality. In this debate, particular emphasis is given to an enhanced monitoring-based AC proposal for assuring multiple service levels in multiclass networks.Centro de CiĂȘncias e Tecnologias da Computação do Departamento de InformĂĄtica da Universidade do Minho (CCTC

    Adaptive Replication in Distributed Content Delivery Networks

    Full text link
    We address the problem of content replication in large distributed content delivery networks, composed of a data center assisted by many small servers with limited capabilities and located at the edge of the network. The objective is to optimize the placement of contents on the servers to offload as much as possible the data center. We model the system constituted by the small servers as a loss network, each loss corresponding to a request to the data center. Based on large system / storage behavior, we obtain an asymptotic formula for the optimal replication of contents and propose adaptive schemes related to those encountered in cache networks but reacting here to loss events, and faster algorithms generating virtual events at higher rate while keeping the same target replication. We show through simulations that our adaptive schemes outperform significantly standard replication strategies both in terms of loss rates and adaptation speed.Comment: 10 pages, 5 figure

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    A flexible, abstract network optimisation framework and its application to telecommunications network design and configuration problems

    Get PDF
    A flexible, generic network optimisation framework is described. The purpose of this framework is to reduce the effort required to solve particular network optimisation problems. The essential idea behind the framework is to develop a generic network optimisation problem to which many network optimisation problems can be mapped. A number of approaches to solve this generic problem can then be developed. To solve some specific network design or configuration problem the specific problem is mapped to the generic problem and one of the problem solvers is used to obtain a solution. This solution is then mapped back to the specific problem domain. Using the framework in this way, a network optimisation problem can be solved using less effort than modelling the problem and developing some algorithm to solve the model. The use of the framework is illustrated in two separate problems: design of an enterprise network to accommodate voice and data traffic and configuration of a core diffserv/MPLS network. In both cases, the framework enabled solutions to be found with less effort than would be required if a more direct approach was used
    • 

    corecore