12,521 research outputs found

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Detecting the neuropathic pain component in the clinical setting: a study protocol for validation of screening instruments for the presence of a neuropathic pain component

    No full text
    BACKGROUND The presence of nerve damage plays a key role in the development and prognosis of chronic pain states. Assessment of the presence and severity of a neuropathic pain component (NePC) is key in diagnosing chronic pain patients. Low back pain (LBP) and neck and shoulder pain (NSP) are highly prevalent and clinically important medical and societal problems in which a NePC is frequently present. The more severe the NePC, the worse the course of the pain, its prognosis and the results of treatment. Reliable and standardised diagnosis of the NePC remains difficult to achieve. Standardized and validated screening tools may help to reliably identify the NePC in individual chronic pain patients. The aim of this study is to validate the Dutch language versions of the PainDETECT Questionnaire (PDQ-Dlv) and the 'Douleur Neuropathique 4 Questions' (DN4-Dlv) for use in primary and specialist medical care settings to screen for a NePC in patients with chronic pain due to (1) LBP, (2) NSP or (3) known peripheral nerve damage (PND). METHODS/DESIGN The study design is cross-sectional to assess the validity of the PDQ-Dlv and the DN4-Dlv with 2 weeks follow-up for test-retest reliability and 3 months follow-up for monitoring and prognosis. 438 patients with chronic pain due to (1) LBP, (2) NSP or (3) PND. will be included in this study. Based on the IASP definition of neuropathic pain, two physicians will independently assess whether the patient has a NEPC or not. This result will be compared with the outcome of the PDQ-Dlv & DN4-Dlv, the grading system for neuropathic pain, bed side examination and quantitative sensory testing. This study will further collect data regarding prevalence of NePC, general health status, mental health status, functioning, pain attribution and quality of life. DISCUSSION The rationale for this study is to provide detailed information on the clinimetric quality of the PDQ-Dlv and DN4-Dlv in Dutch speaking countries. Our innovative multi-factorial approach should help achieve more reliable diagnosis and quantification of a NePC in patients with chronic pain. TRIAL REGISTRATION The Netherlands National Trial Register (NTR3030).This project is supported by an unrestricted grant from Pfizer

    A Logic Programming Approach to Knowledge-State Planning: Semantics and Complexity

    Full text link
    We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well-suited for planning under incomplete knowledge. Furthermore, it enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLV^K system, which implements the language K on top of the DLV logic programming system.Comment: 48 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Avoiding Catch-22:Validating the PainDETECT in a in a population of patients with chronic pain

    Get PDF
    BACKGROUND: Neuropathic pain is defined as pain caused by a lesion or disease of the somatosensory nervous system and is a major therapeutic challenge. Several screening tools have been developed to help physicians detect patients with neuropathic pain. These have typically been validated in populations pre-stratified for neuropathic pain, leading to a so called "Catch-22 situation:" "a problematic situation for which the only solution is denied by a circumstance inherent in the problem or by a rule". The validity of screening tools needs to be proven in patients with pain who were not pre-stratified on basis of the target outcome: neuropathic pain or non-neuropathic pain. This study aims to assess the validity of the Dutch PainDETECT (PainDETECT-Dlv) in a large population of patients with chronic pain. METHODS: A cross-sectional multicentre design was used to assess PainDETECT-Dlv validity. Included where patients with low back pain radiating into the leg(s), patients with neck-shoulder-arm pain and patients with pain due to a suspected peripheral nerve damage. Patients' pain was classified as having a neuropathic pain component (yes/no) by two experienced physicians ("gold standard"). Physician opinion based on the Grading System was a secondary comparison. RESULTS: In total, 291 patients were included. Primary analysis was done on patients where both physicians agreed upon the pain classification (n = 228). Compared to the physician's classification, PainDETECT-Dlv had a sensitivity of 80% and specificity of 55%, versus the Grading System it achieved 74 and 46%. CONCLUSION: Despite its internal consistency and test-retest reliability the PainDETECT-Dlv is not an effective screening tool for a neuropathic pain component in a population of patients with chronic pain because of its moderate sensitivity and low specificity. Moreover, the indiscriminate use of the PainDETECT-Dlv as a surrogate for clinical assessment should be avoided in daily clinical practice as well as in (clinical-) research. Catch-22 situations in the validation of screening tools can be prevented by not pre-stratifying the patients on basis of the target outcome before inclusion in a validation study for screening instruments. TRIAL REGISTRATION: The protocol was registered prospectively in the Dutch National Trial Register: NTR 3030
    • …
    corecore