1,105 research outputs found

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry

    Data Sketches for Disaggregated Subset Sum and Frequent Item Estimation

    Full text link
    We introduce and study a new data sketch for processing massive datasets. It addresses two common problems: 1) computing a sum given arbitrary filter conditions and 2) identifying the frequent items or heavy hitters in a data set. For the former, the sketch provides unbiased estimates with state of the art accuracy. It handles the challenging scenario when the data is disaggregated so that computing the per unit metric of interest requires an expensive aggregation. For example, the metric of interest may be total clicks per user while the raw data is a click stream with multiple rows per user. Thus the sketch is suitable for use in a wide range of applications including computing historical click through rates for ad prediction, reporting user metrics from event streams, and measuring network traffic for IP flows. We prove and empirically show the sketch has good properties for both the disaggregated subset sum estimation and frequent item problems. On i.i.d. data, it not only picks out the frequent items but gives strongly consistent estimates for the proportion of each frequent item. The resulting sketch asymptotically draws a probability proportional to size sample that is optimal for estimating sums over the data. For non i.i.d. data, we show that it typically does much better than random sampling for the frequent item problem and never does worse. For subset sum estimation, we show that even for pathological sequences, the variance is close to that of an optimal sampling design. Empirically, despite the disadvantage of operating on disaggregated data, our method matches or bests priority sampling, a state of the art method for pre-aggregated data and performs orders of magnitude better on skewed data compared to uniform sampling. We propose extensions to the sketch that allow it to be used in combining multiple data sets, in distributed systems, and for time decayed aggregation

    Bottom-k and Priority Sampling, Set Similarity and Subset Sums with Minimal Independence

    Full text link
    We consider bottom-k sampling for a set X, picking a sample S_k(X) consisting of the k elements that are smallest according to a given hash function h. With this sample we can estimate the relative size f=|Y|/|X| of any subset Y as |S_k(X) intersect Y|/k. A standard application is the estimation of the Jaccard similarity f=|A intersect B|/|A union B| between sets A and B. Given the bottom-k samples from A and B, we construct the bottom-k sample of their union as S_k(A union B)=S_k(S_k(A) union S_k(B)), and then the similarity is estimated as |S_k(A union B) intersect S_k(A) intersect S_k(B)|/k. We show here that even if the hash function is only 2-independent, the expected relative error is O(1/sqrt(fk)). For fk=Omega(1) this is within a constant factor of the expected relative error with truly random hashing. For comparison, consider the classic approach of kxmin-wise where we use k hash independent functions h_1,...,h_k, storing the smallest element with each hash function. For kxmin-wise there is an at least constant bias with constant independence, and it is not reduced with larger k. Recently Feigenblat et al. showed that bottom-k circumvents the bias if the hash function is 8-independent and k is sufficiently large. We get down to 2-independence for any k. Our result is based on a simply union bound, transferring generic concentration bounds for the hashing scheme to the bottom-k sample, e.g., getting stronger probability error bounds with higher independence. For weighted sets, we consider priority sampling which adapts efficiently to the concrete input weights, e.g., benefiting strongly from heavy-tailed input. This time, the analysis is much more involved, but again we show that generic concentration bounds can be applied.Comment: A short version appeared at STOC'1

    What you can do with Coordinated Samples

    Full text link
    Sample coordination, where similar instances have similar samples, was proposed by statisticians four decades ago as a way to maximize overlap in repeated surveys. Coordinated sampling had been since used for summarizing massive data sets. The usefulness of a sampling scheme hinges on the scope and accuracy within which queries posed over the original data can be answered from the sample. We aim here to gain a fundamental understanding of the limits and potential of coordination. Our main result is a precise characterization, in terms of simple properties of the estimated function, of queries for which estimators with desirable properties exist. We consider unbiasedness, nonnegativity, finite variance, and bounded estimates. Since generally a single estimator can not be optimal (minimize variance simultaneously) for all data, we propose {\em variance competitiveness}, which means that the expectation of the square on any data is not too far from the minimum one possible for the data. Surprisingly perhaps, we show how to construct, for any function for which an unbiased nonnegative estimator exists, a variance competitive estimator.Comment: 4 figures, 21 pages, Extended Abstract appeared in RANDOM 201
    • …
    corecore