473 research outputs found

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    Sparse Inverse Covariance Estimation for Chordal Structures

    Full text link
    In this paper, we consider the Graphical Lasso (GL), a popular optimization problem for learning the sparse representations of high-dimensional datasets, which is well-known to be computationally expensive for large-scale problems. Recently, we have shown that the sparsity pattern of the optimal solution of GL is equivalent to the one obtained from simply thresholding the sample covariance matrix, for sparse graphs under different conditions. We have also derived a closed-form solution that is optimal when the thresholded sample covariance matrix has an acyclic structure. As a major generalization of the previous result, in this paper we derive a closed-form solution for the GL for graphs with chordal structures. We show that the GL and thresholding equivalence conditions can significantly be simplified and are expected to hold for high-dimensional problems if the thresholded sample covariance matrix has a chordal structure. We then show that the GL and thresholding equivalence is enough to reduce the GL to a maximum determinant matrix completion problem and drive a recursive closed-form solution for the GL when the thresholded sample covariance matrix has a chordal structure. For large-scale problems with up to 450 million variables, the proposed method can solve the GL problem in less than 2 minutes, while the state-of-the-art methods converge in more than 2 hours

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p

    Glosarium Matematika

    Get PDF

    Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations

    Full text link
    It is generally accepted that the effective velocity of a viscous flow over a porous bed satisfies the Beavers-Joseph slip law. To the contrary, interface law for the effective stress has been a subject of controversy. Recently, a pressure jump interface law has been rigorously derived by Marciniak-Czochra and Mikeli\'c. In this paper, we provide a confirmation of the analytical result using direct numerical simulation of the flow at the microscopic level.Comment: 25 pages, preprin

    Preservice Elementary Teachers\u27 Diverlopment Of Rational Number Understanding Through The Social Perspective And The Relationship Among Social And Individual Environments

    Get PDF
    A classroom teaching experiment was conducted in a semester-long undergraduate mathematics content course for elementary education majors. Preservice elementary teachers\u27 development of rational number understanding was documented through the social and psychological perspectives. In addition, social and sociomathematical norms were documented as part of the classroom structure. A hypothetical learning trajectory and instructional sequence were created from a combination of previous research with children and adults. Transcripts from each class session were analyzed to determine the social and sociomathematical norms as well as the classroom mathematical practices. The social norms established included a) explaining and justifying solutions and solution processes, b) making sense of others\u27 explanations and justifications, c) questioning others when misunderstandings occur, and d) helping others. The sociomathematical norms established included determining what constitutes a) an acceptable solution and b) a different solution. The classroom mathematical practices established included ideas related to a) defining fractions, b) defining the whole, c) partitioning, d) unitizing, e) finding equivalent fractions, f) comparing and ordering fractions, g) adding and subtracting fractions, and h) multiplying fractions. The analysis of individual students\u27 contributions included analyzing the transcripts to determine the ways in which individuals participated in the establishment of the practices. Individuals contributed to the practices by a) introducing ideas and b) sustaining ideas. The transcripts and student work samples were analyzed to determine the ways in which the social classroom environment impacted student learning. Student learning was affected when a) ideas were rejected and b) ideas were accepted. As a result of the data analysis, the hypothetical learning trajectory was refined to include four phases of learning instead of five. In addition, the instructional sequence was refined to include more focus on ratios. Two activities, the number line and between activities, were suggested to be deleted because they did not contribute to students\u27 development

    Proof of concept for a smart composite orbital debris detector

    Get PDF
    Space debris particles with dimensions smaller than tens of millimetres are not trackable with existing monitoring systems and have sufficient energy to harm orbiting Earth satellites during impact events. This paper presents a proof-of-concept for an in-situ smart carbon fibre reinforced plastic (CFRP) composite orbital debris detector that is capable of localising space debris impacts on Earth satellites and measuring the direction and velocity of debris particles. This spacecraft detection system can be used to warn satellites about the impact occurrence and to enhance current Space Surveillance Networks by providing a catalogue of debris objects. The proposed orbital debris detector consists of two thin parallel CFRP composite plates, each instrumented with three piezoelectric transducers embedded into the laminate. The localisation method is based on the measurement of acoustic emissions generated by debris impacts on the CFRP plates, which are processed with the time reversal algorithm. The calculation of the direction of debris particles and their speed are accomplished by determining the arrival time of acquired signals and the speed of waves propagating within each CFRP plate. Experimental results showed accurate estimation of the impact location, direction and velocity, thus demonstrating the potential use of the proposed orbital debris detector in future Earth satellite systems
    corecore