2,550 research outputs found
Passive Interfering Method for InSAR Based on Circularly Moving Strong Scatterers
A novel jamming method based on circularly moving strong scatterers is proposed. The jamming signal model is presented first, and the corresponding imaging results are derived through a range-Doppler algorithm. Detailed analysis shows that the proposed method can decrease the correlation, produce interferometric phase bias, result in failure of phase unwrapping, and reduce the accuracy of the digital elevation model. Simulation results are provided to verify the effectiveness of the proposed method
An Analytical Model of Packet Collisions in IEEE 802.15.4 Wireless Networks
Numerous studies showed that concurrent transmissions can boost wireless
network performance despite collisions. While these works provide empirical
evidence that concurrent transmissions may be received reliably, existing
signal capture models only partially explain the root causes of this
phenomenon. We present a comprehensive mathematical model that reveals the
reasons and provides insights on the key parameters affecting the performance
of MSK-modulated transmissions. A major contribution is a closed-form
derivation of the receiver bit decision variable for arbitrary numbers of
colliding signals and constellations of power ratios, timing offsets, and
carrier phase offsets. We systematically explore the root causes for successful
packet delivery under concurrent transmissions across the whole parameter space
of the model. We confirm the capture threshold behavior observed in previous
studies but also reveal new insights relevant for the design of optimal
protocols: We identify capture zones depending not only on the signal power
ratio but also on time and phase offsets.Comment: Accepted for publication in the IEEE Transactions on Wireless
Communications under the title "On the Reception of Concurrent Transmissions
in Wireless Sensor Networks.
Inflow process of pedestrians to a confined space
To better design safe and comfortable urban spaces, understanding the nature
of human crowd movement is important. However, precise interactions among
pedestrians are difficult to measure in the presence of their complex
decision-making processes and many related factors. While extensive studies on
pedestrian flow through bottlenecks and corridors have been conducted, the
dominant mode of interaction in these scenarios may not be relevant in
different scenarios. Here, we attempt to decipher the factors that affect human
reactions to other individuals from a different perspective. We conducted
experiments employing the inflow process in which pedestrians successively
enter a confined area (like an elevator) and look for a temporary position. In
this process, pedestrians have a wider range of options regarding their motion
than in the classical scenarios; therefore, other factors might become
relevant. The preference of location is visualized by pedestrian density
profiles obtained from recorded pedestrian trajectories. Non-trivial patterns
of space acquisition, e.g., an apparent preference for positions near corners,
were observed. This indicates the relevance of psychological and anticipative
factors beyond the private sphere, which have not been deeply discussed so far
in the literature on pedestrian dynamics. From the results, four major factors,
which we call flow avoidance, distance cost, angle cost, and boundary
preference, were suggested. We confirmed that a description of decision-making
based on these factors can give a rise to realistic preference patterns, using
a simple mathematical model. Our findings provide new perspectives and a
baseline for considering the optimization of design and safety in crowded
public areas and public transport carriers.Comment: 23 pages, 6 figure
Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms
Traffic-like collective movements are observed at almost all levels of
biological systems. Molecular motor proteins like, for example, kinesin and
dynein, which are the vehicles of almost all intra-cellular transport in
eukayotic cells, sometimes encounter traffic jam that manifests as a disease of
the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the
collagen fibrils of the extracellular matrix of vertebrates, has also been
observed in recent experiments. Traffic-like movements of social insects like
ants and termites on trails are, perhaps, more familiar in our everyday life.
Experimental, theoretical and computational investigations in the last few
years have led to a deeper understanding of the generic or common physical
principles involved in these phenomena. In particular, some of the methods of
non-equilibrium statistical mechanics, pioneered almost a hundred years ago by
Einstein, Langevin and others, turned out to be powerful theoretical tools for
quantitaive analysis of models of these traffic-like collective phenomena as
these systems are intrinsically far from equilibrium. In this review we
critically examine the current status of our understanding, expose the
limitations of the existing methods, mention open challenging questions and
speculate on the possible future directions of research in this
interdisciplinary area where physics meets not only chemistry and biology but
also (nano-)technology.Comment: 33 page Review article, REVTEX text, 29 EPS and PS figure
Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4
Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
Multicellular rosettes drive fluid-solid transition in epithelial tissues
Models for confluent biological tissues often describe the network formed by
cells as a triple-junction network, similar to foams. However, higher order
vertices or multicellular rosettes are prevalent in developmental and {\it in
vitro} processes and have been recognized as crucial in many important aspects
of morphogenesis, disease, and physiology. In this work, we study the influence
of rosettes on the mechanics of a confluent tissue. We find that the existence
of rosettes in a tissue can greatly influence its rigidity. Using a generalized
vertex model and effective medium theory we find a fluid-to-solid transition
driven by rosette density and intracellular tensions. This transition exhibits
several hallmarks of a second-order phase transition such as a growing
correlation length and a universal critical scaling in the vicinity a critical
point. Further, we elucidate the nature of rigidity transitions in dense
biological tissues and other cellular structures using a generalized Maxwell
constraint counting approach. This answers a long-standing puzzle of the origin
of solidity in these systems.Comment: 11 pages, 5 figures + 8 pages, 7 figures in Appendix. To be appear in
PR
A self-driven phase transition drives Myxococcus xanthus fruiting body formation
Combining high-resolution single cell tracking experiments with numerical
simulations, we show that starvation-induced fruiting body (FB) formation in
Myxococcus xanthus is a phase separation driven by cells that tune their
motility over time. The phase separation can be understood in terms of cell
density and a dimensionless Peclet number that captures cell motility through
speed and reversal frequency. Our work suggests that M. xanthus take advantage
of a self-driven non-equilibrium phase transition that can be controlled at the
single cell level
- …
