12,128 research outputs found

    The Critical Transmitting Range for Connectivity in Sparse Wireless Ad Hoc Networks

    Get PDF
    In this paper, we analyze the critical transmitting range for connectivity in wireless ad hoc networks. More specifically, we consider the following problem: assume nn nodes, each capable of communicating with nodes within a radius of rr, are randomly and uniformly distributed in a dd-dimensional region with a side of length ll; how large must the transmitting range rr be to ensure that the resulting network is connected with high probability? First, we consider this problem for stationary networks, and we provide tight upper and lower bounds on the critical transmitting range for one-dimensional networks, and non-tight bounds for two and three-dimensional networks. Due to the presence of the geometric parameter ll in the model, our results can be applied to dense {em as well as sparse} ad hoc networks, contrary to existing theoretical results that apply only to dense networks. We also investigate several related questions through extensive simulations. First, we evaluate the relationship between the critical transmitting range and the minimum transmitting range that ensures formation of a connected component containing a large fraction (e.g. 90%) of the nodes. Then, we consider the mobile version of the problem, in which nodes are allowed to move during a time interval and the value of rr ensuring connectedness for a given fraction of the interval must be determined. These results yield insight into how mobility affects connectivit

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks

    Design and Analysis of SD_DWCA - A Mobility based clustering of Homogeneous MANETs

    Full text link
    This paper deals with the design and analysis of the distributed weighted clustering algorithm SD_DWCA proposed for homogeneous mobile ad hoc networks. It is a connectivity, mobility and energy based clustering algorithm which is suitable for scalable ad hoc networks. The algorithm uses a new graph parameter called strong degree defined based on the quality of neighbours of a node. The parameters are so chosen to ensure high connectivity, cluster stability and energy efficient communication among nodes of high dynamic nature. This paper also includes the experimental results of the algorithm implemented using the network simulator NS2. The experimental results show that the algorithm is suitable for high speed networks and generate stable clusters with less maintenance overhead

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Randomized Initialization of a Wireless Multihop Network

    Full text link
    Address autoconfiguration is an important mechanism required to set the IP address of a node automatically in a wireless network. The address autoconfiguration, also known as initialization or naming, consists to give a unique identifier ranging from 1 to nn for a set of nn indistinguishable nodes. We consider a wireless network where nn nodes (processors) are randomly thrown in a square XX, uniformly and independently. We assume that the network is synchronous and two nodes are able to communicate if they are within distance at most of rr of each other (rr is the transmitting/receiving range). The model of this paper concerns nodes without the collision detection ability: if two or more neighbors of a processor uu transmit concurrently at the same time, then uu would not receive either messages. We suppose also that nodes know neither the topology of the network nor the number of nodes in the network. Moreover, they start indistinguishable, anonymous and unnamed. Under this extremal scenario, we design and analyze a fully distributed protocol to achieve the initialization task for a wireless multihop network of nn nodes uniformly scattered in a square XX. We show how the transmitting range of the deployed stations can affect the typical characteristics such as the degrees and the diameter of the network. By allowing the nodes to transmit at a range r= \sqrt{\frac{(1+\ell) \ln{n} \SIZE}{\pi n}} (slightly greater than the one required to have a connected network), we show how to design a randomized protocol running in expected time O(n3/2log2n)O(n^{3/2} \log^2{n}) in order to assign a unique number ranging from 1 to nn to each of the nn participating nodes

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201
    corecore